
Roll No: 21272105020xx Page No: 1

EX.NO: 1
DATE:

ELUCIDATING POLICY ITERATION IN JACK’S CAR
RENTAL PROBLEM

AIM
 To develop a Python program to elucidate value iteration and policy iteration in Jacks’
Car Rental problem.

PROBLEM SATEMENT

Jack manages two locations for a nationwide car rental company. Each day, some
number of customers arrives at each location to rent cars. If Jack has a car available, he rents it
out and is credited $10 by the national company. If he is out of cars at that location, then the
business is lost. Cars become available for renting the day after they are returned. To help
ensure that cars are available where they are needed, Jack can move them between the two
locations overnight, at a cost of $2 per car moved.

POLICY ITERATION ALGORITHM
A policy is a mapping from states to actions, i.e., given a state, how many cars should Jack
move overnight. Now, suppose Jack has some policy π, then given this π, the value of a state
(say s) is the expected reward that Jack would get when he starts from s and follows π after
that

The policy iteration algorithm, as shown in the above image, consists of three

components. The first component is the initialization. Initialize the value and policy matrices
to zero. Given a policy, define a value for each state, and since state is a pair of two numbers
where each number takes a value between 0 and 20, hence represent value by a matrix of shape

Roll No: 21272105020xx Page No: 2

(21 x 21). The policy takes a state and outputs an action; hence, it can also be represented by a
matrix of the same shape.

The second component is policy evaluation. By policy evaluation, we mean that

following this policy, what should be the value of any state. As mentioned above, given a policy
π, the value of a state (say s) is the expected reward that Jack would get when he starts from s
and follows π after that. This Bellman equation forms the basis of the value update shown in
the policy evaluation component. After many such updates, V(s) converges to a number which
almost satisfies (with at most some θ error) the Bellman equation and hence represents the
value of state s.

The third component is policy improvement. Given a state (say s), assign π(s) to be

equal to that action which maximizes the expected reward. The policy becomes stable when
none of the action maximization step in any state causes a change in the policy.

Algorithm:

1. Initialize Policy by starting with a random policy (e.g., move 0 cars between
locations).

2. For each state, calculate expected rewards by following the current policy and update
the value of each state based on expected future returns.

3. For each state, take different actions and update the policy with the action that
maximizes expected profits.

4. Repeat policy evaluation and improvement until the policy remains unchanged.
5. Return the final policy that maximizes profits for each state.

PROGRAM

import numpy as np

import sys

import matplotlib.pyplot as plt

if "../" not in sys.path:

 sys.path.append("../")

def value_iteration_for_gamblers(p_h, theta=0.0001, discount_factor=1.0):

 rewards = np.zeros(101)

 rewards[100] = 1

 V = np.zeros(101)

Roll No: 21272105020xx Page No: 3

 def one_step_lookahead(s, V, rewards):

 A = np.zeros(101)

 stakes = range(1, min(s, 100-s)+1)

 for a in stakes:

 A[a] = p_h * (rewards[s+a] + V[s+a]*discount_factor) + (1-p_h) * (rewards[s-a] + V[s-
a]*discount_factor)

 return A

 while True:

 delta = 0

 for s in range(1, 100):

 A = one_step_lookahead(s, V, rewards)

 best_action_value = np.max(A)

 delta = max(delta, np.abs(best_action_value - V[s]))

 V[s] = best_action_value

 if delta < theta:

 break

 policy = np.zeros(100)

 for s in range(1, 100):

 A = one_step_lookahead(s, V, rewards)

 best_action = np.argmax(A)

 policy[s] = best_action

 return policy, V

policy, v = value_iteration_for_gamblers(0.25)

print("Optimized Policy:")

print(policy)

print("")

print("Optimized Value Function:")

print(v)

Roll No: 21272105020xx Page No: 4

OUTPUT

RESULT

The Python program to elucidate value iteration and policy iteration in Jack’s Car
Rental problem was developed and executed successfully.

Roll No: 21272105020xx Page No: 5

EX.NO: 2
DATE:

ELUCIDATING VALUE ITERATION FOR THE
GAMBLER’S PROBLEM

AIM
 To develop a Python program to elucidate value iteration in Gambler’s problem.

PROBLEM SATEMENT

A gambler has the opportunity to make bets on the outcomes of a sequence of coin flips. If the
coin comes up heads, he wins as many dollars as he has staked on that flip; if it is tails, he loses
his stake. The game ends when the gambler wins by reaching his goal of $100, or loses by
running out of money.
On each flip, the gambler must decide what portion of his capital to stake, in integer numbers
of dollars. This problem can be formulated as an undiscounted, episodic, finite MDP.
The state is the gambler’s capital, s ∈ {1, 2, . . . , 99}. The actions are stakes, a ∈ {0, 1, . . . ,
min(s, 100 − s)}. The reward is zero on all transitions except those on which the gambler
reaches his goal, when it is +1.
The state-value function then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy maximizes the probability of
reaching the goal. Let p_h denote the probability of the coin coming up heads. If p_h is known,
then the entire problem is known and it can be solved, for instance, by value iteration.

VALUE ITERATIONALGORITHM
 Value Iteration is a method for finding the optimal value function V* by solving the
Bellman equations iteratively. It uses the concept of dynamic programming to maintain a value
function V that approximates the optimal value function V*, iteratively improving V until it
converges to V* (or close to it).

Value Iteration

Roll No: 21272105020xx Page No: 6

ALGORITHM
1. Initialize by assigning a value of 0 to all states except the goal state, which has a value

of 1.
2. For each possible amount of money the gambler has (state), calculate the expected

reward for each action (bet amount).
3. For each state, update its value by selecting the action (bet amount) that maximizes

the expected reward, considering the probabilities of winning or losing the bet.
4. Repeat the process for all states until the values converge (i.e., no significant changes

in value between iterations).
5. Once the values stabilize, derive the optimal betting strategy by choosing the action

that leads to the highest value for each state.

PROGRAM
import numpy as np

class JackCarRentalPolicyIteration:

 def __init__(self, max_cars, transition_probs, rewards, discount_factor=0.9):

 self.max_cars = max_cars

 self.transition_probs = transition_probs

 self.rewards = rewards

 self.discount_factor = discount_factor

 self.num_actions = 2 * max_cars + 1

 self.policy = np.zeros((max_cars + 1, max_cars + 1), dtype=int)

 self.value_function = np.zeros((max_cars + 1, max_cars + 1))

 def policy_evaluation(self):

 delta = np.inf

 while delta > 1e-6:

 delta = 0

 new_value_function = np.zeros_like(self.value_function)

 for s1 in range(self.max_cars + 1):

 for s2 in range(self.max_cars + 1):

 action = self.policy[s1, s2]

 move_cars = action - self.max_cars

 new_s1 = np.clip(s1 - move_cars, 0, self.max_cars)

Roll No: 21272105020xx Page No: 7

 new_s2 = np.clip(s2 + move_cars, 0, self.max_cars)

 transition_prob = self.transition_probs[action][s1, s2]

 reward = self.rewards[s1, s2]

 new_value_function[s1, s2] = np.sum(transition_prob * (reward +
self.discount_factor * self.value_function))

 delta = max(delta, np.abs(new_value_function[s1, s2] - self.value_function[s1,
s2]))

 self.value_function = new_value_function

 def policy_improvement(self):

 policy_stable = True

 new_policy = np.zeros_like(self.policy)

 for s1 in range(self.max_cars + 1):

 for s2 in range(self.max_cars + 1):

 action_values = np.zeros(self.num_actions)

 for action in range(self.num_actions):

 move_cars = action - self.max_cars

 new_s1 = np.clip(s1 - move_cars, 0, self.max_cars)

 new_s2 = np.clip(s2 + move_cars, 0, self.max_cars)

 transition_prob = self.transition_probs[action][s1, s2]

 reward = self.rewards[s1, s2]

 action_values[action] = np.sum(transition_prob * (reward + self.discount_factor
* self.value_function))

 best_action = np.argmax(action_values)

 new_policy[s1, s2] = best_action

 if self.policy[s1, s2] != best_action:

 policy_stable = False

 self.policy = new_policy

 return policy_stable

 def run(self):

Roll No: 21272105020xx Page No: 8

 while True:

 self.policy_evaluation()

 if self.policy_improvement():

 break

 return self.policy, self.value_function

if __name__ == "__main__":

 max_cars = 20

 transition_probs = np.zeros((2 * max_cars + 1, max_cars + 1, max_cars + 1, max_cars + 1,
max_cars + 1))

 for action in range(2 * max_cars + 1):

 move_cars = action - max_cars

 for s1 in range(max_cars + 1):

 for s2 in range(max_cars + 1):

 probs = np.random.uniform(0.1, 0.2, (max_cars + 1, max_cars + 1))

 probs /= probs.sum()

 transition_probs[action][s1, s2] = probs

 rewards = np.minimum(np.arange(max_cars + 1)[:, None], 2) +
np.minimum(np.arange(max_cars + 1), 2)

 pi = JackCarRentalPolicyIteration(max_cars, transition_probs, rewards)

 optimal_policy, optimal_value_function = pi.run()

 print("Optimal Policy:")

 print(optimal_policy)

 print("Optimal Value Function:")

 print(optimal_value_function)

Roll No: 21272105020xx Page No: 9

OUTPUT

RESULT

The Python program to elucidate value iteration in Gambler’s problem was developed
and executed successfully.

Roll No: 21272105020xx Page No: 10

EX.NO: 3
DATE:

RANDOM WALK USING MARKOV PROCESS

AIM
 To generate random walk using Markov process.

RANDOM WALK

A random walk is a process for traversing a graph where at every step an outgoing edge
chosen uniformly at random is followed. A Markov chain is similar except the outgoing edge
is chosen according to an arbitrary fixed distribution.

MARKOV PROCESS

Markov process is a stochastic model that undergoes transitions from one state to
another in a probabilistic manner. This process has the Markov property, which states that the
future state depends only on the current state and not on the sequence of events that preceded
it.

PROBLEM STATEMENT

States are represented by 'A', 'B', 'C', and 'D', and the transition probabilities between
these states are defined in the transition_probabilities dictionary. For each state, the dictionary
specifies the probability of transitioning to other states. The generate_random_walks function
takes a starting state and the number of steps as input. It simulates a random walk by choosing
the next state based on the transition probabilities defined in the transition_probabilities
dictionary. The random.choices function is used to select the next state based on the provided
weights (transition probabilities). The program then generates multiple random walks, each
starting from state 'A', and prints the sequence of states traversed in each walk.

Algorithm:

1. Identify all possible states of the system (e.g., positions on a line or graph).
2. Set up a transition matrix that defines the probabilities of moving from one state to

another, where each state’s movement follows a Markov process (i.e., the next state
depends only on the current state).

3. Choose an initial state to begin the random walk.
4. At each step, use the transition matrix to randomly move to the next state based on the

current state's transition probabilities.
5. Continue the random walk by repeating the process for a given number of steps or

until reaching a predefined stopping condition (e.g., hitting a boundary or returning to
the start).

6. After completing the walk, analyze the results to understand the behavior of the
random walk, such as expected time to return to the start or the distribution of states
visited.

Roll No: 21272105020xx Page No: 11

PROGRAM
import random

import numpy as np

import matplotlib.pyplot as plt

numpy.random.seed()

prob = [0.4,0.6]

start = 0

positions = [start]

rr = np.random.random(10)

downp = rr > prob[0]

upp = rr < prob[1]

t=[i for i in range(0,11)]

for idownp, iupp in zip(downp, upp):

 down = idownp

 up = iupp

 positions.append(positions[-1] - down + up)

plt.plot(t,positions,marker='o')

plt.show()

print(upp)

print(downp)

Roll No: 21272105020xx Page No: 12

OUTPUT

RESULT
 The Python program to generate random walk using Markov process was developed
and executed successfully.

Roll No: 21272105020xx Page No: 13

EX.NO: 4a
DATE:

FRAMING TIC-TAC-TOE IN A RL WORLD USING POLICY
ITERATION

AIM
 To develop a simple reinforcement learning algorithm for agents to learn the game tic-
tac-toe using value function using policy iteration.

PROBLEM STATEMENT: TIC-TAC-TOE GAME
 Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two
players who take turns marking the spaces in a three-by-three grid with X or O. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner.
It is a solved game, with a forced draw assuming best play from both players. Tic-tac-toe is
played on a three-by-three grid by two players, who alternately place the marks X and O in one
of the nine spaces in the grid. In the following example, the first player (X) wins the game in
seven steps:

POLICY ITERATIONALGORITHM

 A policy is a mapping from states to actions, i.e., given a state, how many cars should
Jack move overnight? Now, suppose Jack has some policy π, then given this π, the value of a
state (say s) is the expected reward that Jack would get when he starts from s and follows π
after that.

Policy Iteration

Roll No: 21272105020xx Page No: 14

TIC TAC TOE PROBLEM FORMULATION
To formulate this reinforcement learning problem, the most important thing is to be

clear about the 3 major components — state, action, and reward. The state of this game is the
board state of both the agent and its opponent, so initialize a 3x3 board with zeros indicating
available positions and update positions with 1 if player 1 takes a move and -1 if player 2 takes
a move. The action is what positions a player can choose based on the current board state.
Reward is between 0 and 1 and is only given at the end of the game.

Player Setting
Create a player class to represents agent, and the player is able to:

 Choose actions based on current estimation of the states

 Record all the states of the game

 Update states-value estimation after each game

 Save and load the policy

State-Value update

To update value estimation of states, apply policy iteration which is updated based on
the formula below

Training
Now agent is able to learn by updating value estimation and our board is all set up, it

is time to let two players play against each other. During training, the process for each player
is:
 Look for available positions
 Choose action
 Update board state and add the action to player’s states
 Judge if reach the end of the game and give reward accordingly

Algorithm:

1. Represent all possible Tic-Tac-Toe board configurations as states.
2. Start with an initial policy (e.g., choose random moves) for each board configuration.
3. For each state, calculate the expected rewards by following the current policy. This

includes winning, losing, or drawing the game after a series of moves.
4. Update the value of each state based on future rewards.
5. For each state, try different actions (placing 'X' or 'O' in an empty spot).
6. Update the policy with the action that maximizes the expected reward.
7. Repeat the policy evaluation and improvement steps until the policy becomes stable.
8. Once the policy has converged, the final policy is the optimal strategy that maximizes

the chances of winning the game for each board configuration.

Roll No: 21272105020xx Page No: 15

PROGRAM
#Policy iteration

import random

def check_winner(board):

 win_conditions = [(0,1,2), (3,4,5), (6,7,8), (0,3,6), (1,4,7), (2,5,8), (0,4,8), (2,4,6)]

 for cond in win_conditions:

 if board[cond[0]] == board[cond[1]] == board[cond[2]] != 0:

 return board[cond[0]]

 return 0 if 0 not in board else None

def available_moves(board):

 return [i for i, x in enumerate(board) if x == 0]

class TicTacToePolicyIteration:

 def __init__(self, discount=0.9, epsilon=1e-6):

 self.discount = discount

 self.epsilon = epsilon

 self.values = {tuple(self.int_to_board(b)): 0 for b in range(3**9)}

 self.policy = {tuple(self.int_to_board(b)):
random.choice(available_moves(self.int_to_board(b)))

 for b in range(3**9) if available_moves(self.int_to_board(b))}

 def int_to_board(self, num):

 return [(num // (3**i)) % 3 for i in range(9)]

 def evaluate_policy(self):

 while True:

 delta = 0

 for board in self.values:

Roll No: 21272105020xx Page No: 16

 winner = check_winner(list(board))

 if winner is not None:

 self.values[board] = 1 if winner == 1 else -1 if winner == 2 else 0

 continue

 move = self.policy[board]

 new_board = list(board)

 new_board[move] = 1 # Simulate player's move

 reward = 1 if check_winner(new_board) == 1 else -1 if check_winner(new_board)
== 2 else 0

 new_value = reward + self.discount * self.values[tuple(new_board)]

 delta = max(delta, abs(self.values[board] - new_value))

 self.values[board] = new_value

 if delta < self.epsilon:

 break

 def improve_policy(self):

 policy_stable = True

 for board in self.policy:

 old_action = self.policy[board]

 best_action = None

 best_value = -float('inf')

 for move in available_moves(board):

 new_board = list(board)

 new_board[move] = 1 # Simulate player's move

 move_value = self.values[tuple(new_board)]

 if move_value > best_value:

 best_value = move_value

 best_action = move

 self.policy[board] = best_action

 if old_action != best_action:

Roll No: 21272105020xx Page No: 17

 policy_stable = False

 return policy_stable

 def policy_iteration(self):

 while True:

 self.evaluate_policy()

 if self.improve_policy():

 break

 def get_best_move(self, board):

 return self.policy[tuple(board)]

 def play(self):

 board = [0] * 9

 while True:

 print_board(board)

 if (winner := check_winner(board)) is not None:

 print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

 break

 board[self.get_best_move(board)] = 1

 if (winner := check_winner(board)) is not None:

 print_board(board)

 print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

 break

 board[random.choice(available_moves(board))] = 2

def print_board(board):

 symbols = {0: '-', 1: 'X', 2: 'O'}

Roll No: 21272105020xx Page No: 18

 for i in range(0, 9, 3):

 print(f"{symbols[board[i]]} {symbols[board[i+1]]} {symbols[board[i+2]]}")

 print()

game = TicTacToePolicyIteration()

game.policy_iteration()

game.play()

OUTPUT

RESULT
 The Python program to develop a simple reinforcement learning algorithm for agents
to learn the game tic-tac-toe using value function using policy iteration was developed and
executed successfully.

Roll No: 21272105020xx Page No: 19

EX.NO: 4b
DATE:

FRAMING TIC-TAC-TOE IN A RL WORLD USING VALUE
ITERATION

AIM
 To develop a simple reinforcement learning algorithm for agents to learn the game tic-
tac-toe using value function.

PROBLEM STATEMENT: TIC-TAC-TOE GAME
 Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two
players who take turns marking the spaces in a three-by-three grid with X or O. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner.
It is a solved game, with a forced draw assuming best play from both players. Tic-tac-toe is
played on a three-by-three grid by two players, who alternately place the marks X and O in one
of the nine spaces in the grid. In the following example, the first player (X) wins the game in
seven steps:

VALUE ITERATIONALGORITHM
 Value Iteration is a method for finding the optimal value function V* by solving the
Bellman equations iteratively. It uses the concept of dynamic programming to maintain a value
function V that approximates the optimal value function V*, iteratively improving V until it
converges to V* (or close to it).

Value Iteration

Roll No: 21272105020xx Page No: 20

TIC TAC TOE PROBLEM FORMULATION

To formulate this reinforcement learning problem, the most important thing is to be
clear about the 3 major components — state, action, and reward. The state of this game is the
board state of both the agent and its opponent, so initialize a 3x3 board with zeros indicating
available positions and update positions with 1 if player 1 takes a move and -1 if player 2 takes
a move. The action is what positions a player can choose based on the current board state.
Reward is between 0 and 1 and is only given at the end of the game.

Player Setting
Create a player class to represents agent, and the player is able to:

 Choose actions based on current estimation of the states

 Record all the states of the game
 Update states-value estimation after each game

 Save and load the policy

State-Value update

To update value estimation of states, apply value iteration which is updated based on
the formula below

Training

Now agent is able to learn by updating value estimation and our board is all set up, it
is time to let two players play against each other. During training, the process for each player
is:
 Look for available positions
 Choose action
 Update board state and add the action to player’s states
 Judge if reach the end of the game and give reward accordingly

Algorithm:

1. Represent all possible Tic-Tac-Toe board configurations as states.
2. Assign an initial value to each state, typically starting with 0 for all states except

terminal states (win, loss, draw).
3. For each possible board configuration, calculate the expected reward for each possible

action (placing 'X' or 'O' in an empty space).
4. For each state, update its value by selecting the action that maximizes the expected

reward, considering the outcomes of winning, losing, or drawing after the move.
5. Repeat the process for all states until the values converge.
6. Once the values stabilize, derive the optimal policy by selecting the action that leads

to the highest value for each state (i.e., the best move for any board configuration).

Roll No: 21272105020xx Page No: 21

PROGRAM

#Value iteration

import random

def check_winner(board):

 win_conditions = [(0,1,2), (3,4,5), (6,7,8), (0,3,6), (1,4,7), (2,5,8), (0,4,8), (2,4,6)]

 for cond in win_conditions:

 if board[cond[0]] == board[cond[1]] == board[cond[2]] != 0:

 return board[cond[0]]

 return 0 if 0 not in board else None

def available_moves(board):

 return [i for i, x in enumerate(board) if x == 0]

class TicTacToeValueIteration:

 def __init__(self, discount=0.9, epsilon=1e-6):

 self.discount = discount

 self.epsilon = epsilon

 self.values = {tuple(self.int_to_board(b)): 0 for b in range(3**9)}

 def int_to_board(self, num):

 return [(num // (3**i)) % 3 for i in range(9)]

 def value_iteration(self):

 while True:

 delta = 0

 new_values = self.values.copy()

 for board in self.values:

 winner = check_winner(list(board))

Roll No: 21272105020xx Page No: 22

 if winner is not None:

 new_values[board] = 1 if winner == 1 else -1 if winner == 2 else 0

 continue

 best_value = -float('inf')

 for move in available_moves(board):

 new_board = list(board)

 new_board[move] = 1 # Simulate player's move

 reward = 1 if check_winner(new_board) == 1 else -1 if check_winner(new_board)
== 2 else 0

 move_value = reward + self.discount * self.values[tuple(new_board)]

 best_value = max(best_value, move_value)

 delta = max(delta, abs(self.values[board] - best_value))

 new_values[board] = best_value

 self.values = new_values

 if delta < self.epsilon:

 break

 def get_best_move(self, board):

 best_move = None

 best_value = -float('inf')

 for move in available_moves(board):

 new_board = list(board)

 new_board[move] = 1 # Simulate player's move

 move_value = self.values[tuple(new_board)]

 if move_value > best_value:

 best_value = move_value

 best_move = move

Roll No: 21272105020xx Page No: 23

 return best_move

 def play(self):

 board = [0] * 9

 while True:

 print_board(board)

 if (winner := check_winner(board)) is not None:

 print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

 break

 board[self.get_best_move(board)] = 1

 if (winner := check_winner(board)) is not None:

 print_board(board)

 print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

 break

 board[random.choice(available_moves(board))] = 2

def print_board(board):

 symbols = {0: '-', 1: 'X', 2: 'O'}

 for i in range(0, 9, 3):

 print(f"{symbols[board[i]]} {symbols[board[i+1]]} {symbols[board[i+2]]}")

 print()

Run the game

game = TicTacToeValueIteration()

game.value_iteration()

game.play()

Roll No: 21272105020xx Page No: 24

OUTPUT

RESULT
 The Python program to develop a simple reinforcement learning algorithm for agents
to learn the game tic-tac-toe using value function using value iteration was developed and
executed successfully.

Roll No: 21272105020xx Page No: 25

EX.NO: 5
DATE:

BLACKJACK WITH FIRST VISIT MONTE CARLO

AIM
 To implement First-Visit Monte Carlo Policy evaluation for Blackjack game.

BLACKJACK - PROBLEM STATEMENT

The game begins with two cards dealt to both dealer and player. One of the dealer’s
cards is face up and the other is face down. If the player has 21 immediately (an ace and a 10-
card), it is called a natural. He then wins unless the dealer also has a natural, in which case the
game is a draw. If the player does not have a natural, then he can request additional cards, one
by one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes bust, he loses;
if he sticks, then it becomes the dealer’s turn. The dealer hits or sticks according to a fixed
strategy without choice: he sticks on any sum of 17 or greater, and hits otherwise. If the dealer
goes bust, then the player wins; otherwise, the outcome — win, lose, or draw — is determined
by whose final sum is closer to 21. If the player holds an ace that he could count as 11 without
going bust, then the ace is said to be usable.

The Pack

The standard 52-card pack is used, but in most casinos several decks of cards are
shuffled together. The six-deck game (312 cards) is the most popular. In addition, the dealer
uses a blank plastic card, which is never dealt, but is placed toward the bottom of the pack to
indicate when it will be time for the cards to be reshuffled. When four or more decks are used,
they are dealt from a shoe (a box that allows the dealer to remove cards one at a time, face
down, without actually holding one or more packs).

Object of the Game
Each participant attempts to beat the dealer by getting a count as close to 21 as

possible, without going over 21.

Card Values/scoring
It is up to each individual player if an ace is worth 1 or 11. Face cards are 10 and any

other card is its pip value.

Betting

Before the deal begins, each player places a bet, in chips, in front of them in the
designated area. Minimum and maximum limits are established on the betting, and the general
limits are from $2 to $500.

Roll No: 21272105020xx Page No: 26

The Play

The player to the left goes first and must decide whether to "stand" (not ask for another
card) or "hit" (ask for another card in an attempt to get closer to a count of 21, or even hit 21
exactly). Thus, a player may stand on the two cards originally dealt to them, or they may ask
the dealer for additional cards, one at a time, until deciding to stand on the total (if it is 21 or
under), or goes "bust" (if it is over 21). In the latter case, the player loses and the dealer collects
the bet wagered. The dealer then turns to the next player to their left and serves them in the
same manner.

The combination of an ace with a card other than a ten-card is known as a "soft hand,"
because the player can count the ace as a 1 or 11, and either draw cards or not. For example
with a "soft 17" (an ace and a 6), the total is 7 or 17. While a count of 17 is a good hand, the
player may wish to draw for a higher total. If the draw creates a bust hand by counting the ace
as an 11, the player simply counts the ace as a 1 and continues playing by standing or "hitting"
(asking the dealer for additional cards, one at a time).

The Dealer's Play
When the dealer has served every player, the dealer’s face-down card is turned up. If

the total is 17 or more, it must stand. If the total is 16 or under, they must take a card. The
dealer must continue to take cards until the total is 17 or more, at which point the dealer must
stand. If the dealer has an ace, and counting it as 11 would bring the total to 17 or more (but
not over 21), the dealer must count the ace as 11 and stand. The dealer's decisions, then, are
automatic on all plays, whereas the player always has the option of taking one or more cards.

Signaling Intentions

When a player's turn comes, they can say "Hit" or can signal for a card by scratching
the table with a finger or two in a motion toward themselves, or they can wave their hand in
the same motion that would say to someone "Come here!" When the player decides to stand,
they can say "Stand" or "No more," or can signal this intention by moving their hand sideways,
palm down and just above the table.

Splitting Pairs
If a player's first two cards are of the same denomination, such as two jacks or two

sixes, they may choose to treat them as two separate hands when their turn comes around. The
amount of the original bet then goes on one of the cards, and an equal amount must be placed
as a bet on the other card. The player first plays the hand to their left by standing or hitting one
or more times; only then is the hand to the right played. The two hands are thus treated
separately, and the dealer settles with each on its own merits. With a pair of aces, the player is
given one card for each ace and may not draw again. Also, if a ten-card is dealt to one of these
aces, the payoff is equal to the bet (not one and one-half to one, as with a blackjack at any other
time).

Roll No: 21272105020xx Page No: 27

Doubling Down

Another option open to the player is doubling their bet when the original two cards dealt
total 9, 10, or 11. When the player's turn comes, they place a bet equal to the original bet, and
the dealer gives the player just one card, which is placed face down and is not turned up until
the bets are settled at the end of the hand. With two fives, the player may split a pair, double
down, or just play the hand in the regular way. Note that the dealer does not have the option of
splitting or doubling down.

FIRST-VISIT MONTE CARLO POLICY EVALUATION

ALGORITHM

1. Simulate the Blackjack environment
2. Define the policy function which takes the current state and check if the score is

greater than or equal to 20, if yes we return 0 else we return 1. i.e If the score is

greater than or equal to 20 we stand (0) else we hit (1)
3. Define a function called generate_episode for generating epsiodes

4. Perform First Visit MC Prediction

5. Define the function plot_blackjack for plotting the value function and we can see how

our value function is attaining the convergence.

PROGRAM

import numpy as np

import random

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from collections import defaultdict

Roll No: 21272105020xx Page No: 28

card_values = {'2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '10': 10, 'J': 10, 'Q': 10, 'K': 10,
'A': 11}

def deal_card():

 return random.choice(list(card_values.keys()))

def get_hand_value(hand):

 value = sum(card_values[card] for card in hand)

 num_aces = hand.count('A')

 while value > 21 and num_aces:

 value -= 10

 num_aces -= 1

 return value

def blackjack_policy(hand):

 return 'hit' if get_hand_value(hand) < 20 else 'stand'

def play_blackjack(policy):

 player_hand = [deal_card(), deal_card()]

 dealer_hand = [deal_card(), deal_card()]

 while policy(player_hand) == 'hit':

 player_hand.append(deal_card())

 if get_hand_value(player_hand) > 21:

 return -1 # Player busts

 while get_hand_value(dealer_hand) < 17:

 dealer_hand.append(deal_card())

 if get_hand_value(dealer_hand) > 21:

 return 1 # Dealer busts

 player_value = get_hand_value(player_hand)

 dealer_value = get_hand_value(dealer_hand)

 if player_value > dealer_value:

Roll No: 21272105020xx Page No: 29

 return 1 # Player wins

 elif player_value < dealer_value:

 return -1 # Dealer wins

 else:

 return 0 # Tie

def first_visit_monte_carlo(num_episodes):

 state_action_returns = defaultdict(list)

 state_action_counts = defaultdict(int)

 Q = defaultdict(float)

 for episode in range(num_episodes):

 player_hand = [deal_card(), deal_card()]

 episode_trace = []

 while True:

 action = blackjack_policy(player_hand)

 episode_trace.append((tuple(player_hand), action))

 if action == 'hit':

 player_hand.append(deal_card())

 if get_hand_value(player_hand) > 21:

 episode_trace.append((tuple(player_hand), 'bust'))

 break

 else:

 break

 reward = play_blackjack(blackjack_policy)

 for state, action in episode_trace:

 if action != 'bust':

 state_action_returns[(state, action)].append(reward)

 state_action_counts[(state, action)] += 1

Roll No: 21272105020xx Page No: 30

 for state_action, returns in state_action_returns.items():

 Q[state_action] = np.mean(returns)

 return Q, state_action_counts

def plot_3d(Q):

 fig = plt.figure()

 ax = fig.add_subplot(111, projection='3d')

 x = []

 y = []

 z = []

 for (state, action), value in Q.items():

 if action == 'hit':

 x.append(get_hand_value(state))

 y.append(1) # hit

 elif action == 'stand':

 x.append(get_hand_value(state))

 y.append(0) # stand

 z.append(value)

 ax.scatter(x, y, z, c='r', marker='o')

 ax.set_xlabel('Hand Value')

 ax.set_ylabel('Action')

 ax.set_zlabel('Value Estimate')

 ax.set_yticks([0, 1])

 ax.set_yticklabels(['Stand', 'Hit'])

 plt.show()

def plot_line(Q):

 hand_values = sorted(set(get_hand_value(state) for state, action in Q.keys()))

 actions = ['stand', 'hit']

Roll No: 21272105020xx Page No: 31

 values_hit = [Q.get((tuple([str(value)] * 2), 'hit'), 0) for value in hand_values]

 values_stand = [Q.get((tuple([str(value)] * 2), 'stand'), 0) for value in hand_values]

 plt.figure(figsize=(10, 6))

 plt.plot(hand_values, values_hit, label='Hit', color='blue', marker='o')

 plt.plot(hand_values, values_stand, label='Stand', color='green', marker='o')

 plt.xlabel('Hand Value')

 plt.ylabel('Value Estimate')

 plt.title('State-Action Value Function: Hit vs Stand')

 plt.legend()

 plt.grid(True)

 plt.show()

Main execution

num_episodes = 1000

Q, state_action_counts = first_visit_monte_carlo(num_episodes)

Print some of the results

print("State-Action Value Estimates:")

for (state, action), value in sorted(Q.items()):

 print(f"State: {state}, Action: {action}, Value: {value:.2f}")

Plot the 3D representation

plot_3d(Q)

Plot the line representation

plot_line(Q)

Roll No: 21272105020xx Page No: 32

OUTPUT

RESULT
 The Python program to implement First-Visit Monte Carlo Policy evaluation for
Blackjack game was developed and executed successfully.

Roll No: 21272105020xx Page No: 33

EX.NO: 6
DATE:

EVALUATE WINDY GRID WORLD WITH KING’S MOVES

AIM
 To evaluate Windy GridWorld environment using SARSA method.

SARSA ALGORITHM FOR A WINDY GRIDWORLD ENVIRONMENT

A standard gridworld Figure 1, with start and goal states, but with one difference: there
is a crosswind upward through the middle of the grid. The actions are the standard four up,
down, right, and left but in the middle region the resultant next states are shifted upward by a
wind, the strength of which varies from column to column. The strength of the wind is given
below each column, in number of cells shifted, upward. For example, if you are one cell to the
right of the goal, then the action left takes you to the cell just above the goal. Let us treat this
as an undiscounted episodic task, with constant rewards of 1 until the goal state is reached.
Figure 6.11 shows the result of applying-greedy Sarsa to this task, with = 01, =05, and the
initial values Q(sa) = 0 for all sa. The increasing slope of the graph shows that the goal is
reached more and more quickly over time. By 8000 time steps, the greedy policy (shown inset)
was long since optimal; continued-greedy exploration kept the average episode length at about
17 steps, two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used on this task because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would never end.
Step-by-step learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else

Figure 1: Windy Grid World

Roll No: 21272105020xx Page No: 34

Figure 2 On-policy TD Control Algorithm- SARSA

The SARSA algorithm works by carrying out actions based on rewards received from
previous actions. To do this, SARSA stores a table of state (S)-action (A) estimate pairs for
each Q-value. This table is known as a Q-table, while the state-action pairs are denoted as
Q(S, A). The SARSA process starts by initializing Q(S, A) to arbitrary values Figure 2. In
this step, the initial current state (S) is set, and the initial action (A) is selected by using an
epsilon-greedy algorithm policy based on current Q-values. An epsilon-greedy policy
balances the use of exploitation and exploration methods in the learning process to select the
action with the highest estimated reward.

ALGORITHM:
1. START
2. Initialize the rewards, state space, and hyperparameters:

a. State space S: The set of possible states (e.g., battery levels for the robot).
b. Action space A: The set of possible actions (e.g., search, wait, recharge).
c. Initialize the Q-table Q(s,a) with random values or zeros for all state-action

pairs.
d. Set hyperparameters: Learning rate α, discount factor γ, and exploration rate ϵ.

3. Define the reward function, that takes the current state s and action a as inputs and
returns the reward r.

4. Define the state transition function, that takes the current state s and action a as
inputs and returns next s′ state.

5. Implement SARSA Algorithm for given environment.
6. After completing all the episodes, display the plots and optimal policy.
7. STOP

PROGRAM:
import numpy as np
import matplotlib
matplotlib.use('Agg')

Roll No: 21272105020xx Page No: 35

import matplotlib.pyplot as plt
World dimensions
WORLD_HEIGHT = 7
WORLD_WIDTH = 10
Wind strength for each column
WIND = [0, 0, 0, 1, 1, 1, 2, 2, 1, 0]
Possible actions (including King's moves)
ACTION_UP = 0
ACTION_DOWN = 1
ACTION_LEFT = 2
ACTION_RIGHT = 3
ACTION_UP_LEFT = 4
ACTION_UP_RIGHT = 5
ACTION_DOWN_LEFT = 6
ACTION_DOWN_RIGHT = 7
Probability for exploration
EPSILON = 0.1
Learning rate
ALPHA = 0.5
Reward for each step
REWARD = -1.0
Start and Goal positions
START = [3, 0]
GOAL = [3, 7]
All possible actions
ACTIONS = [ACTION_UP, ACTION_DOWN, ACTION_LEFT, ACTION_RIGHT,
ACTION_UP_LEFT, ACTION_UP_RIGHT, ACTION_DOWN_LEFT,
ACTION_DOWN_RIGHT]

def step(state, action):
 i, j = state
 if action == ACTION_UP:
 return [max(i - 1 - WIND[j], 0), j]
 elif action == ACTION_DOWN:
 return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j]
 elif action == ACTION_LEFT:
 return [max(i - WIND[j], 0), max(j - 1, 0)]
 elif action == ACTION_RIGHT:
 return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)]
 elif action == ACTION_UP_LEFT:
 return [max(i - 1 - WIND[max(j - 1, 0)], 0), max(j - 1, 0)]
 elif action == ACTION_UP_RIGHT:
 return [max(i - 1 - WIND[min(j + 1, WORLD_WIDTH - 1)], 0), min(j + 1,
WORLD_WIDTH - 1)]

Roll No: 21272105020xx Page No: 36

 elif action == ACTION_DOWN_LEFT:
 return [max(min(i + 1 - WIND[max(j - 1, 0)], WORLD_HEIGHT - 1), 0), max(j - 1, 0)]
 elif action == ACTION_DOWN_RIGHT:
 return [max(min(i + 1 - WIND[min(j + 1, WORLD_WIDTH - 1)], WORLD_HEIGHT -
1), 0), min(j + 1, WORLD_WIDTH - 1)]
 else:
 assert False
def episode(q_value):
 time = 0
 state = START
 if np.random.binomial(1, EPSILON) == 1:
 action = np.random.choice(ACTIONS)
 else:
 values_ = q_value[state[0], state[1], :]
 action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_
== np.max(values_)])
 while state != GOAL:
 next_state = step(state, action)
 if np.random.binomial(1, EPSILON) == 1:
 next_action = np.random.choice(ACTIONS)
 else:
 values_ = q_value[next_state[0], next_state[1], :]
 next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if
value_ == np.max(values_)])
 # Q-learning update rule
 q_value[state[0], state[1], action] += \
 ALPHA * (REWARD + np.max(q_value[next_state[0], next_state[1], :]) -
 q_value[state[0], state[1], action])
 state = next_state
 action = next_action
 time += 1
 return time
def figure_6_3():
 q_value = np.zeros((WORLD_HEIGHT, WORLD_WIDTH, len(ACTIONS)))
 episode_limit = 500
 steps = []
 ep = 0
 while ep < episode_limit:
 steps.append(episode(q_value))
 ep += 1
 steps = np.add.accumulate(steps)
 plt.plot(steps, np.arange(1, len(steps) + 1))
 plt.xlabel('Time steps')
 plt.ylabel('Episodes')

Roll No: 21272105020xx Page No: 37

 plt.savefig('figure_6_3.png')
 plt.close()
 optimal_policy = []
 for i in range(0, WORLD_HEIGHT):
 optimal_policy.append([])
 for j in range(0, WORLD_WIDTH):
 if [i, j] == GOAL:
 optimal_policy[-1].append('G')
 continue
 bestAction = np.argmax(q_value[i, j, :])
 if bestAction == ACTION_UP:
 optimal_policy[-1].append('U')
 elif bestAction == ACTION_DOWN:
 optimal_policy[-1].append('D')
 elif bestAction == ACTION_LEFT:
 optimal_policy[-1].append('L')
 elif bestAction == ACTION_RIGHT:
 optimal_policy[-1].append('R')
 elif bestAction == ACTION_UP_LEFT:
 optimal_policy[-1].append('UL')
 elif bestAction == ACTION_UP_RIGHT:
 optimal_policy[-1].append('UR')
 elif bestAction == ACTION_DOWN_LEFT:
 optimal_policy[-1].append('LL')
 elif bestAction == ACTION_DOWN_RIGHT:
 optimal_policy[-1].append('LR')

 print('Optimal policy is:')
 for row in optimal_policy:
 print(row)
 print('Wind strength for each column:\n{}'.format([str(w) for w in WIND])
if __name__ == '__main__':
 figure_6_3()

Roll No: 21272105020xx Page No: 38

OUTPUT

RESULT

Thus, the evaluation of Windy Grid World environment with King’s move using
SARSA method has been implemented and executed successfully.

Roll No: 21272105020xx Page No: 39

EX.NO: 7
DATE:

OFF-POLICY TD CONTROL ALGORITHM FOR CLIFF
WALKING

AIM

To implement the Off-Policy TD algorithm known as Q-learning for Cliff Walking.

PROBLEM STATEMENT - CLIFF WALKING

The cliff walking problem is a grid problem with a 4 x 12 board. The agent starts in the
bottom left corner and must reach the bottom right corner. The agent must step into the cliff
that segregates those tiles.

A) Define the Environment

1. Create a gridworld representation of the environment with states, actions, and
rewards.

2. Define the state space, which includes the agent's position on the grid.
3. Define the action space, which includes possible movements (up, down, left, right).
4. Specify rewards and penalties for different states and actions. In cliff-walking, we

typically have a large negative reward for falling off the cliff.

B) Initialize Q-Table to values of 0s

Roll No: 21272105020xx Page No: 40

PROGRAM:

import numpy as np

ROWS = 4

COLS = 12

S = (3, 0)

G = (3, 11)

class Cliff:

 def __init__(self):

 self.end = False

 self.pos = S

 self.board = np.zeros([4, 12])

 # add cliff marked as -1

 self.board[3, 1:11] = -1

 def nxtPosition(self, action):

 if action == "up":

 nxtPos = (self.pos[0] - 1, self.pos[1])

 elif action == "down":

 nxtPos = (self.pos[0] + 1, self.pos[1])

 elif action == "left":

 nxtPos = (self.pos[0], self.pos[1] - 1)

 else:

 nxtPos = (self.pos[0], self.pos[1] + 1)

 # check legitimacy

 if nxtPos[0] >= 0 and nxtPos[0] <= 3:

 if nxtPos[1] >= 0 and nxtPos[1] <= 11:

 self.pos = nxtPos

 if self.pos == G:

 self.end = True

 print("Game ends reaching goal")

Roll No: 21272105020xx Page No: 41

 if self.board[self.pos] == -1:

 self.end = True

 print("Game ends falling off cliff")

 return self.pos

 def giveReward(self):

 # give reward

 if self.pos == G:

 return -1

 if self.board[self.pos] == 0:

 return -1

 return -100

 def show(self):

 for i in range(0, ROWS):

 print('---')

 out = '| '

 for j in range(0, COLS):

 if self.board[i, j] == -1:

 token = '*'

 if self.board[i, j] == 0:

 token = '0'

 if (i, j) == self.pos:

 token = 'S'

 if (i, j) == G:

 token = 'G'

 out += token + ' | '

 print(out)

 print('---')

Roll No: 21272105020xx Page No: 42

class Agent:

 def __init__(self, exp_rate=0.3, lr=0.1, sarsa=True):

 self.cliff = Cliff()

 self.actions = ["up", "left", "right", "down"]

 self.states = [] # record position and action of each episode

 self.pos = S

 self.exp_rate = exp_rate

 self.lr = lr

 self.sarsa = sarsa

 self.state_actions = {}

 for i in range(ROWS):

 for j in range(COLS):

 self.state_actions[(i, j)] = {}

 for a in self.actions:

 self.state_actions[(i, j)][a] = 0

 def chooseAction(self):

 # epsilon-greedy

 mx_nxt_reward = -999

 action = ""

 if np.random.uniform(0, 1) <= self.exp_rate:

 action = np.random.choice(self.actions)

 else:

 # greedy action

 for a in self.actions:

 current_position = self.pos

 nxt_reward = self.state_actions[current_position][a]

 if nxt_reward >= mx_nxt_reward:

 action = a

 mx_nxt_reward = nxt_reward

Roll No: 21272105020xx Page No: 43

 return action

 def reset(self):

 self.states = []

 self.cliff = Cliff()

 self.pos = S

 def play(self, rounds=10):

 for _ in range(rounds):

 while 1:

 curr_state = self.pos

 cur_reward = self.cliff.giveReward()

 action = self.chooseAction()

 # next position

 self.cliff.pos = self.cliff.nxtPosition(action)

 self.pos = self.cliff.pos

 self.states.append([curr_state, action, cur_reward])

 if self.cliff.end:

 break

 # game end update estimates

 reward = self.cliff.giveReward()

 print("End game reward", reward)

 # reward of all actions in end state is same

 for a in self.actions:

 self.state_actions[self.pos][a] = reward

 if self.sarsa:

 for s in reversed(self.states):

 pos, action, r = s[0], s[1], s[2]

 current_value = self.state_actions[pos][action]

 reward = current_value + self.lr * (r + reward - current_value)

Roll No: 21272105020xx Page No: 44

 self.state_actions[pos][action] = round(reward, 3)

 else:

 for s in reversed(self.states):

 pos, action, r = s[0], s[1], s[2]

 current_value = self.state_actions[pos][action]

 reward = current_value + self.lr * (r + reward - current_value)

 self.state_actions[pos][action] = round(reward, 3)

 # update using the max value of S'

 reward = np.max(list(self.state_actions[pos].values())) # max

 self.reset()

def showRoute(states):

 board = np.zeros([4, 12])

 # add cliff marked as -1

 board[3, 1:11] = -1

 for i in range(0, ROWS):

 print('---')

 out = '| '

 for j in range(0, COLS):

 token = '0'

 if board[i, j] == -1:

 token = '*'

 if (i, j) in states:

 token = 'R'

 if (i, j) == G:

 token = 'G'

 out += token + ' | '

 print(out)

 print('---')

Roll No: 21272105020xx Page No: 45

if __name__ == "__main__":

 print("sarsa training ... ")

 ag = Agent(exp_rate=0.1, sarsa=True)

 ag.play(rounds=500)

 # Sarsa

 ag_op = Agent(exp_rate=0)

 ag_op.state_actions = ag.state_actions

 states = []

 while 1:

 curr_state = ag_op.pos

 action = ag_op.chooseAction()

 states.append(curr_state)

 print("current position {} |action {}".format(curr_state, action))

 # next position

 ag_op.cliff.pos = ag_op.cliff.nxtPosition(action)

 ag_op.pos = ag_op.cliff.pos

 if ag_op.cliff.end:

 break

 showRoute(states)

 print("q-learning training ... ")

 ag = Agent(exp_rate=0.1, sarsa=False)

 ag.play(rounds=500)

 # Q-learning

 ag_op = Agent(exp_rate=0)

 ag_op.state_actions = ag.state_actions

 states = []

 while 1:

 curr_state = ag_op.pos

 action = ag_op.chooseAction()

 states.append(curr_state)

Roll No: 21272105020xx Page No: 46

 print(“current position {} |action {}”.format(curr_state, action))

 # next position

 ag_op.cliff.pos = ag_op.cliff.nxtPosition(action)

 ag_op.pos = ag_op.cliff.pos

 if ag_op.cliff.end:

 break

 showRoute(states)

OUTPUT

current position (3, 0) |action up
current position (2, 0) |action right
current position (2, 1) |action right
current position (2, 2) |action right
current position (2, 3) |action right
current position (2, 4) |action right
current position (2, 5) |action right
current position (2, 6) |action right
current position (2, 7) |action right
current position (2, 8) |action right
current position (2, 9) |action right
current position (2, 10) |action right
current position (2, 11) |action down

Game ends reaching goal

RESULT
Thus, the implementation of the Off-Policy TD algorithm known as Q-learning for Cliff

Walking is executed successfully and output is verified.

Roll No: 21272105020xx Page No: 47

EX.NO: 8
DATE:

ON-POLICY TD CONTROL ALGORITHM FOR FROZEN
LAKE

AIM

To implement On-Policy TD algorithm known as SARSA for Frozen Lake
environment.

ON-POLICY TD CONTROL ALGORITHM: SARSA

State-action-reward-state-action (SARSA) is an on-policy reinforcement learning
algorithm used to teach a new Markov decision process policy. It’s an algorithm where, in the
current state (S), an action (A) is taken and the agent gets a reward (R), and ends up in the next
state (S1), and takes action (A1) in S1. Therefore, the tuple (S, A, R, S1, A1) stands for the
acronym SARSA. It’s called an on-policy algorithm because it updates the policy based on
actions taken.

PROBLEM STATEMENT

In frozen lake environment, the AI agent must cross the frozen lake from the start to the
goal, without falling into the holes.

Frozen Lake Environment

The SARSA algorithm works by carrying out actions based on rewards received from
previous actions. To do this, SARSA stores a table of state (S)-action (A) estimate pairs for
each Q-value. This table is known as a Q-table, while the state-action pairs are denoted as Q(S,
A). Exploitation involves using already known, estimated values to get more previously earned
rewards in the learning process. Exploration involves attempting to find new knowledge on
actions, which may result in short-term, sub-optimal actions during learning but may yield
long-term benefits to find the best possible action and reward. From here, the selected action
is taken, and the reward (R) and next state (S1) are observed. Q(S, A) is then updated, and the
next action (A1) is selected based on the updated Q-values. Action-value estimates of a state
are also updated for each current action-state pair present, which estimates the value of
receiving a reward for taking a given action.

The above steps of R through A1 are repeated until the algorithm’s given episode ends,

which describes the sequence of states, actions and rewards taken until the final (terminal) state

Roll No: 21272105020xx Page No: 48

is reached. State, action and reward experiences in the SARSA process are used to update Q(S,
A) values for each iteration.

ALGORITHM

1. Initialize the environment and Q-table with zeros.
2. Train using the SARSA algorithm, updating Q-values via the state-action reward
dynamics.
3. Evaluate the learned policy periodically to track average rewards.
4. Visualize the agent's performance by rendering its actions in the environment.
5. Analyze results to check if the target average reward was achieved and demonstrate

success.

PROGRAM

import numpy as np
import gym
from tqdm import tqdm
import time
def epsilon_greedy_policy(Q, state, epsilon):
 if np.random.uniform(0, 1) < epsilon:
 return np.random.choice(len(Q[state]))
 else:
 return np.argmax(Q[state])
def sarsa(env, num_episodes, alpha=0.5, gamma=0.99, epsilon=0.5, eval_every=100):
 Q = np.zeros([env.observation_space.n, env.action_space.n])
 pbar = tqdm(total=num_episodes, dynamic_ncols=True)
 avg_rewards = [] # To track average rewards over episodes
 for episode in range(num_episodes):
 state, _ = env.reset()
 action = epsilon_greedy_policy(Q, state, epsilon)
 done = False
 episode_reward = 0
 while not done:
 next_state, reward, done, _, _ = env.step(action)
 next_action = epsilon_greedy_policy(Q, next_state, epsilon)
 td_target = reward + gamma * Q[next_state, next_action]
 td_error = td_target - Q[state, action]
 Q[state, action] += alpha * td_error
 state, action = next_state, next_action
 episode_reward += reward

 pbar.update(1)

 # Track average rewards
 if episode % eval_every == 0:
 avg_reward = evaluate_policy(env, Q, eval_every)
 avg_rewards.append(avg_reward)

Roll No: 21272105020xx Page No: 49

 pbar.set_description(f"Average reward: {avg_reward:.2f}")

 pbar.close()
 return Q, avg_rewards # Ensure both values are returned

def evaluate_policy(env, Q, num_episodes):
 total_reward = 0
 policy = np.argmax(Q, axis=1)
 for episode in range(num_episodes):
 observation, _ = env.reset()
 done = False
 episode_reward = 0
 while not done:
 action = policy[observation]
 observation, reward, done, _, _ = env.step(action)
 episode_reward += reward
 total_reward += episode_reward
 return total_reward / num_episodes
def demo_agent(env, Q, num_episodes=1):
 policy = np.argmax(Q, axis=1)
 for episode in range(num_episodes):
 observation, _ = env.reset()
 done = False
 print("\nEpisode:", episode + 1)
 while not done:
 env.render()
 action = policy[observation]
 observation, _,done, _, _ = env.step(action)
 env.render()
 env.close()
def main():
 env = gym.make("FrozenLake-v1")
 num_episodes = 10000

 Q_sarsa, avg_rewards = sarsa(env, num_episodes)

 # Find episodes required to reach optimal average reward
 target_avg_reward = 0.8 # Define your target average reward
 optimal_episode = next((i * 100 for i, reward in enumerate(avg_rewards) if reward >=
target_avg_reward), None)

 if optimal_episode is not None:
 print(f"Optimal average reward achieved after {optimal_episode} episodes.")
 else:
 print("Optimal average reward not achieved within the training episodes.")

 avg_reward = evaluate_policy(env, Q_sarsa, num_episodes)
 print(f"Average reward after SARSA: {avg_reward}")

 visual_env = gym.make('FrozenLake-v1', render_mode='human')

Roll No: 21272105020xx Page No: 50

 demo_agent(visual_env, Q_sarsa, num_episodes)

if __name__ == '__main__':
 main()

OUTPUT:

RESULT:

 Hence On - policy TD algorithm for Frozen Lake was successfully implemented.

Roll No: 21272105020xx Page No: 51

EX.NO: 9
DATE:

ONLINE TABULAR TD ALGORITHM FOR CLIFFWALKING

AIM

To implement online tabular temporal difference algorithm for Cliff Walking.

TRUE ONLINE TEMPORAL DIFFERENCE ALGORITHM

1. Initialize Q-Values:
Initialize the Q-values (action-values) for all state-action pairs arbitrarily, e.g.,

to zeros.
2. Set Hyperparameters:

Define the learning rate (alpha), discount factor (gamma), and lambda (λ) for
eligibility traces.

3. Initialize Eligibility Traces:
Initialize eligibility traces for each state-action pair to zero.

 4. Repeat for each episode:
a. Initialize the starting state (S).
b. Initialize eligibility traces to zero for the new episode.
c. Repeat for each time step within the episode:

i. Choose an action (A) based on a policy (e.g., epsilon-greedy).
ii. Take the action and observe the reward (R) and the new state (S').
iii. Calculate the TD error (delta):

- delta = R + gamma * Q(S', A) - Q(S, A)
iv. Update the eligibility traces for the current state-action pair:

- E(S, A) = gamma * lambda * E(S, A) + 1
v. Update the Q-value for the current state-action pair using the True Online

TD update
 rule:

- Q(S, A) = Q(S, A) + alpha * delta * E(S, A)
vi. Update the eligibility traces for all state-action pairs:

- E(S, A) = gamma * lambda * E(S, A)
vii. Set the current state to the new state (S = S').

d. Repeat until the episode ends.

Roll No: 21272105020xx Page No: 52

ALGORITHM:

1. Initialize Q-table, learning rate, discount factor, and exploration parameters.
2. For each episode, reset the environment and initialize total reward.
3. Select actions using ϵ\epsilonϵ-greedy policy, perform the action, and observe the next

state, reward, and done flag.
4. Update the Q-value for the current state and action based on the reward and the

maximum Q-value of the next state.
5. Accumulate the reward, move to the next state, and repeat until the episode ends.
6. Record the total reward, decay the exploration rate, and continue to the next episode.
7. After training, visualize the total rewards and Q-value heatmap.

PROGRAM
import numpy as np
import gym
import pygame
import imageio
import random

class TDAgent:
 def __init__(self, n_states, n_actions, alpha=0.1, gamma=0.99, epsilon=0.1):
 self.n_states = n_states
 self.n_actions = n_actions
 self.alpha = alpha
 self.gamma = gamma
 self.epsilon = epsilon
 self.Q = np.zeros((n_states, n_actions))

 def choose_action(self, state):
 if np.random.uniform(0, 1) < self.epsilon:
 return np.random.choice(self.n_actions)
 else:
 return np.argmax(self.Q[state, :])

 def update(self, state, action, reward, next_state):
 predict = self.Q[state, action]
 target = reward + self.gamma * np.max(self.Q[next_state, :])
 self.Q[state, action] += self.alpha * (target - predict)

def train(agent, env, episodes, render=False):
 rewards = []
 for episode in range(episodes):
 state = env.reset()
 episode_reward = 0

Roll No: 21272105020xx Page No: 53

 while True:
 action = agent.choose_action(state)
 next_state, reward, done, _ = env.step(action)
 agent.update(state, action, reward, next_state)
 state = next_state
 episode_reward += reward

 if done:
 break
 rewards.append(episode_reward)
 return rewards,agent

def record_video(agent, env, out_directory, fps=1):
 images = []
 done = False
 state = env.reset(seed=40)
 img = env.render(mode='rgb_array')
 images.append(img)
 while not done:
 # Take the action (index) that have the maximum expected future reward given that state
 action = agent.choose_action(state)
 state, reward, done, info = env.step(action) # We directly put next_state = state for
recording logic
 img = env.render(mode='rgb_array')
 if reward == -100:
 images = []
 images.append(img)
 wait_time_per_frame = 1000//fps
 imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)],
duration=wait_time_per_frame)

env = gym.make('CliffWalking-v0')
agent = TDAgent(env.observation_space.n, env.action_space.n)
episodes = 500
rewards,trainned_agent = train(agent, env, episodes, render=True)

video_path="/content/replay.gif"
video_fps=10
record_video(trainned_agent, env, video_path, video_fps)

from IPython.display import Image
Image('./replay.gif')

Roll No: 21272105020xx Page No: 54

OUTPUT

INITIAL STATE

GOAL STATE

RESULT:

 Thus, the implementation of online tabular temporal difference algorithm for Cliff
Walking is executed successfully and output is verified.

Roll No: 21272105020xx Page No: 55

EX.NO: 10
DATE:

RECYCLING ROBOT USING Q-LEARNING

AIM
 To implement Q-Learning algorithm for Recycling Robot.

PROBLEM SATEMENT

A mobile robot with a rechargeable battery collects empty soda cans in an office area.
In the transition graph, the state nodes represent the high and low energy levels. They are
connected with black edges to two action nodes (search, wait) and to three action nodes (search,
wait, recharge), respectively. On the edges of the graph, the transition probability and the
reward for that transition are displayed. The separated diagrams show the action-value
functions for the optimal policy, where the values are calculated based on the Bellman
optimality equations. The optimal choice is highlighted in both states; in the case of multiple
optimal policies in the given state, each of them is highlighted.

Q-LEARNING ALGORITHM

Q-Learning is a model-free reinforcement learning algorithm used to find the optimal action-
selection policy for an agent interacting with an environment. It is a type of temporal difference
learning, which means it updates estimates based on other learned estimates, rather than waiting
for the final outcome.

Roll No: 21272105020xx Page No: 56

In Q-learning, an agent learns how to act optimally by learning the action-value function (Q-
function), which provides a measure of the expected cumulative reward for each action taken
in a given state.

Algorithm:
1. START
2. Initialize the rewards, state space, and hyperparameters:

a. State space S: The set of possible states (e.g., battery levels for the robot).
b. Action space A: The set of possible actions (e.g., search, wait, recharge).
c. Initialize the Q-table Q(s,a) with random values or zeros for all state-action

pairs.
d. Set hyperparameters: Learning rate α, discount factor γ, and exploration rate ϵ.

3. Define the reward function, that takes the current state s and action a as inputs and
returns the reward r.

4. Define the state transition function, that takes the current state s and action a as
inputs and returns next s′ state.

5. Implement Q-Learning Algorithm for given environment.
6. After completing all the episodes, display the plots and optimal policy.
7. STOP

PROGRAM
import numpy as np
import random

class RecyclingEnvironment:
 def __init__(self):
 self.energy_levels = ["high", "low"]
 self.actions = ["search", "wait", "recharge"]
 self.initial_energy_level = "high"
 self.battery_depletion_prob = 0.1

 def reset(self):
 self.current_energy_level = self.initial_energy_level
 return self.current_energy_level

Roll No: 21272105020xx Page No: 57

 def step(self, action):
 # Energy level transitions
 if self.current_energy_level == "high":
 if action == "search":
 self.current_energy_level = "low"
 if np.random.uniform(0, 1) < self.battery_depletion_prob:
 # Robot's battery is depleted while searching
 self.current_energy_level = "low"
 reward = -10 # Penalty for battery depletion
 else:
 reward = random.randint(1, 10) # Random reward for searching
 elif action == "recharge":
 self.current_energy_level = "high"
 reward = 0 # No reward for recharging
 else:
 reward = 0 # No reward for waiting
 else:
 if action == "recharge":
 self.current_energy_level = "high"
 reward = 0 # No reward for recharging
 else:
 reward = 0 # No action other than recharging is allowed when energy is low

 return self.current_energy_level, reward

class QLearningAgent:
 def __init__(self, states, actions, learning_rate=0.1, discount_factor=0.99,
exploration_prob=0.1):
 self.learning_rate = learning_rate
 self.discount_factor = discount_factor
 self.exploration_prob = exploration_prob
 self.states = states
 self.actions = actions
 self.q_table = np.zeros((len(states), len(actions)))

 def choose_action(self, state):
 if np.random.uniform(0, 1) < self.exploration_prob:
 return np.random.choice(self.actions)
 else:
 state_idx = self.states.index(state)
 return self.actions[np.argmax(self.q_table[state_idx, :])]

 def update_q_table(self, state, action, reward, next_state):

Roll No: 21272105020xx Page No: 58

 state_idx = self.states.index(state)
 next_state_idx = self.states.index(next_state)
 action_idx = self.actions.index(action)
 self.q_table[state_idx, action_idx] += self.learning_rate * \
 (reward + self.discount_factor * np.max(self.q_table[next_state_idx, :]) -
self.q_table[state_idx, action_idx])

Hyperparameters
learning_rate = 0.1
discount_factor = 0.99
exploration_prob = 0.1
num_episodes = 1000

Initialize environment and agent
env = RecyclingEnvironment()
states = env.energy_levels
actions = env.actions
agent = QLearningAgent(states, actions, learning_rate, discount_factor, exploration_prob)

Training loop
for episode in range(num_episodes):
 state = env.reset()
 total_reward = 0

 while True:
 action = agent.choose_action(state)
 next_state, reward = env.step(action)
 agent.update_q_table(state, action, reward, next_state)
 total_reward += reward
 state = next_state

 if state == "low":
 break

 if episode % 100 == 0:
 print(f"Episode {episode}, Total Reward: {total_reward}")

Evaluation
state = env.reset()
total_reward = 0

while state == "high":
 action = agent.choose_action(state)
 next_state, reward = env.step(action)

Roll No: 21272105020xx Page No: 59

 total_reward += reward
 state = next_state

print(f"Evaluation - Total Reward: {total_reward}")

OUTPUT
Episode 0, Total Reward: 2
Episode 100, Total Reward: 1
Episode 200, Total Reward: 4
Episode 300, Total Reward: 4
Episode 400, Total Reward: 5
Episode 500, Total Reward: 5
Episode 600, Total Reward: 5
Episode 700, Total Reward: 4
Episode 800, Total Reward: 8
Episode 900, Total Reward: 5
Evaluation - Total Reward: 2

RESULT

Thus, the Recycling Robot problem has been implemented and executed succesfully
using Q-Learning.

