EX.NO: 1 ELUCIDATING POLICY ITERATION IN JACK’S CAR
DATE: RENTAL PROBLEM

AIM
To develop a Python program to elucidate value iteration and policy iteration in Jacks’
Car Rental problem.

PROBLEM SATEMENT

Jack manages two locations for a nationwide car rental company. Each day, some
number of customers arrives at each location to rent cars. If Jack has a car available, he rents it
out and is credited $10 by the national company. If he is out of cars at that location, then the
business is lost. Cars become available for renting the day after they are returned. To help
ensure that cars are available where they are needed, Jack can move them between the two
locations overnight, at a cost of $2 per car moved.

POLICY ITERATION ALGORITHM

A policy is a mapping from states to actions, i.e., given a state, how many cars should Jack
move overnight. Now, suppose Jack has some policy =, then given this =, the value of a state
(say s) is the expected reward that Jack would get when he starts from s and follows & after
that

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and =(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation

Repeat
A«
For each s € &:
v V(s)

V(s) & X, p(s'r|s,7(s) [r + V()]
A — max(A, v — V(s)|)
until A < # (a small positive number)

3. Policy Improvement
policy-stable — true
For each s € &:
old-action + m(s)
m(s) & argmax, _srd_}.a{s',?'h,fa)[':' + ’:r'V(s')]
If old-action # w(s), then policy-stable — false
If policy-stable, then stop and return V = v, and 7 & m.; else go to 2

The policy iteration algorithm, as shown in the above image, consists of three
components. The first component is the initialization. Initialize the value and policy matrices
to zero. Given a policy, define a value for each state, and since state is a pair of two numbers
where each number takes a value between 0 and 20, hence represent value by a matrix of shape
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(21 x 21). The policy takes a state and outputs an action; hence, it can also be represented by a
matrix of the same shape.

The second component is policy evaluation. By policy evaluation, we mean that
following this policy, what should be the value of any state. As mentioned above, given a policy
7, the value of a state (say s) is the expected reward that Jack would get when he starts from s
and follows m after that. This Bellman equation forms the basis of the value update shown in
the policy evaluation component. After many such updates, V(s) converges to a number which
almost satisfies (with at most some 8 error) the Bellman equation and hence represents the
value of state s.

FZ;» rls, m(8))lr + 4V (s)]

The third component is policy improvement. Given a state (say s), assign n(s) to be
equal to that action which maximizes the expected reward. The policy becomes stable when
none of the action maximization step in any state causes a change in the policy.

Algorithm:
1. Initialize Policy by starting with a random policy (e.g., move 0 cars between
locations).

2. For each state, calculate expected rewards by following the current policy and update
the value of each state based on expected future returns.

3. For each state, take different actions and update the policy with the action that
maximizes expected profits.

4. Repeat policy evaluation and improvement until the policy remains unchanged.

5. Return the final policy that maximizes profits for each state.

PROGRAM

import numpy as np
import sys
import matplotlib.pyplot as plt
if "../" not in sys.path:
sys.path.append("../")
def value iteration for gamblers(p_h, theta=0.0001, discount_factor=1.0):
rewards = np.zeros(101)
rewards[100] =1
V =np.zeros(101)
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def one_step lookahead(s, V, rewards):
A =np.zeros(101)
stakes = range(1, min(s, 100-s)+1)
for a in stakes:

Ala]l =p_h* (rewards[s+a] + V[s+a]*discount factor) + (1-p_h) * (rewards[s-a] + V[s-
a]*discount_factor)

return A
while True:
delta=0
for s in range(1, 100):
A =one_step lookahead(s, V, rewards)
best action_value = np.max(A)
delta = max(delta, np.abs(best action_value - V[s]))
V[s] =Dbest_action_value
if delta < theta:
break
policy = np.zeros(100)
for s in range(1, 100):
A =one_step lookahead(s, V, rewards)
best action = np.argmax(A)
policy[s] = best_action
return policy, V
policy, v =value_iteration for gamblers(0.25)
print("Optimized Policy:")
print(policy)
print("")
print("Optimized Value Function:")

print(v)
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OUTPUT
Optimized Policy:
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RESULT

The Python program to elucidate value iteration and policy iteration in Jack’s Car
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.83960814e-01
.83963162e-01

Rental problem was developed and executed successfully.
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EX.NO: 2 ELUCIDATING VALUE ITERATION FOR THE
DATE: GAMBLER’S PROBLEM

AIM
To develop a Python program to elucidate value iteration in Gambler’s problem.

PROBLEM SATEMENT

A gambler has the opportunity to make bets on the outcomes of a sequence of coin flips. If the
coin comes up heads, he wins as many dollars as he has staked on that flip; if it is tails, he loses
his stake. The game ends when the gambler wins by reaching his goal of $100, or loses by
running out of money.

On each flip, the gambler must decide what portion of his capital to stake, in integer numbers
of dollars. This problem can be formulated as an undiscounted, episodic, finite MDP.

The state is the gambler’s capital, s € {1, 2, ..., 99}. The actions are stakes,a € {0, 1, . ..,
min(s, 100 — s)}. The reward is zero on all transitions except those on which the gambler
reaches his goal, when it is +1.

The state-value function then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy maximizes the probability of
reaching the goal. Let p_h denote the probability of the coin coming up heads. If p_h is known,
then the entire problem is known and it can be solved, for instance, by value iteration.

VALUE ITERATIONALGORITHM

Value Iteration is a method for finding the optimal value function V* by solving the
Bellman equations iteratively. It uses the concept of dynamic programming to maintain a value
function V that approximates the optimal value function V*, iteratively improving V until it
converges to V* (or close to it).

Input: MDP M = (S, sy, A, P,(s' | 38),7(s,a, ')
Output: Value function V'

Set V to arbitrary value function; e.g., V(s) = O forall s

Repeat
A+0
Foreachs € S
V'(8) « maxXeeca(s) Do ges Pa(8'| 8) [r(s,a,s) + v V(')

S
———————

Bellman equation
A +— max(A, |V'(s) — V(s)|)
V7 = (7
UntilA <0

Value Iteration
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ALGORITHM

1. Initialize by assigning a value of 0 to all states except the goal state, which has a value
of 1.

2. For each possible amount of money the gambler has (state), calculate the expected
reward for each action (bet amount).

3. For each state, update its value by selecting the action (bet amount) that maximizes
the expected reward, considering the probabilities of winning or losing the bet.

4. Repeat the process for all states until the values converge (i.e., no significant changes
in value between iterations).

5. Once the values stabilize, derive the optimal betting strategy by choosing the action
that leads to the highest value for each state.

PROGRAM

import numpy as np

class

JackCarRentalPolicylteration:

def init (self, max cars, transition_probs, rewards, discount factor=0.9):

self.max_cars = max_cars

self.transition_probs = transition probs

self.rewards = rewards

self.discount_factor = discount_factor

self.num_actions =2 * max_cars + 1

self.policy = np.zeros((max_cars + 1, max_cars + 1), dtype=int)

self.value function = np.zeros((max_cars + 1, max_cars + 1))

def policy evaluation(self):

Roll

delta = np.inf
while delta > le-6:
delta=0
new_value function =np.zeros_like(self.value function)
for sl in range(self.max_cars + 1):
for s2 in range(self.max_cars + 1):
action = self.policy[sl, s2]
move_cars = action - self.max_cars
new_sl =np.clip(sl - move_cars, 0, self.max_cars)
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new_s2 =np.clip(s2 + move_cars, 0, self.max_cars)
transition_prob = self .transition_probs[action][s], s2]
reward = self.rewards[s1, s2]

new value function[sl, s2] = np.sum(transition prob * (reward +
self.discount factor * self.value function))

delta = max(delta, np.abs(new_value function[sl, s2] - self.value function[sl,

s2]))

self.value function =new_value function

def policy improvement(self):
policy stable = True
new_policy = np.zeros_like(self.policy)
for sl in range(self.max_cars + 1):
for s2 in range(self.max_cars + 1):
action_values = np.zeros(self.num_actions)
for action in range(self.num_actions):
move_cars = action - self.max_cars
new_sl =np.clip(sl - move_cars, 0, self.max_cars)
new_s2 =np.clip(s2 + move_cars, 0, self.max_cars)
transition _prob = self .transition probs[action][s], s2]
reward = self.rewards[s1, s2]

action_values[action] = np.sum(transition_prob * (reward + self.discount_factor
* self.value function))

best action = np.argmax(action_values)
new_policy[sl, s2] = best action
if self.policy[s1, s2] !=best action:
policy stable = False
self.policy = new_policy

return policy_stable

def run(self):
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while True:
self.policy evaluation()
if self.policy improvement():
break
return self.policy, self.value function
if name ==" main_":
max_cars = 20

transition_probs = np.zeros((2 * max_cars + 1, max_cars + 1, max_cars + 1, max_cars + 1,
max_cars + 1))

for action in range(2 * max_cars + 1):
move_cars = action - max_cars
for sl in range(max_cars + 1):
for s2 in range(max_cars + 1):
probs = np.random.uniform(0.1, 0.2, (max_cars + 1, max_cars + 1))
probs /= probs.sum()
transition_probs[action][s1, s2] = probs

rewards = np.minimum(np.arange(max cars + 1)[;; None], 2) +
np.minimum(np.arange(max_cars + 1), 2)

pi = JackCarRentalPolicylteration(max_cars, transition_probs, rewards)
optimal policy, optimal value function = pi.run()

print("Optimal Policy:")

print(optimal policy)

print("Optimal Value Function:")

print(optimal value function)
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OUTPUT
optimal Policy:
[[40 18 406 2 21

[19 7 28 17 37

[21 22 11 38 31

[ 112 22 38 19

[24 1 15 26 26

[27 33 137 o

[ 6 17 30 34 33

[ 8 136 37 26

[13 17 17 4 6

[38 16 3 10 31

[12 28 14 30 18

[13 34 © 39 28

[ 4 12 37 26 38

[40 39 24 13 2

[39 32 @ 14 31

[29 29 25 32 37

[ 8 32 38 14 24

[33 37 31 9 16

[ 938 7 40 13

[23 23 22 19 7

[27 21 22 19 21

Optimal value Function:

[[33.54344268 34.54501596 .54604829 35.54305245 . 54909961 .54360491
35.54300585 35.55073309 .54527802 35.54542493 .55027205 .5443252
35.54412819 35.54408271 .54540307 35.54657452 .54726988 . 54665819
35.550163 35.54959849 .54486615 |

.54946529 35.5476995 .54490019 36.54756628 .54601819 . 54491969
36.54438143 36.54639609 .54751531 36.54613594 .54658192 . 54466548
36.5462664 36.54619663 .54386311 36.5438596 .54839213 . 54539287
36.54370551 36.54404614 .55296477]

.5450191 36.54530299 .54553992 37.54235394 .55009364 .54093791
37.54481313 37.54305133 .5421256 37.54561198 . 54804415 .5406934
37.54390808 37.5434523 .54553323 37.54800001 .54524327 . 54494759

.55073098 37.54919936 .54800832 |

.54992964 36.54242934 .54399736 37.54286738 .54552732 .54641147

.54480448 37.54389175 .54892977 37.54692996 .55353369 .54299201

.54770432 37.54625715 .54583155 37.54638394 .54739861 . 54656309

.54863773 37.54768386 .5501776 |

.54366177 36.54786082 .54477521 37.54348638 . 54687895 .54624782

.54729496 37.54891331 .5424958 37.54864274 .54619935 . 54601089

.55132518 37.55077368 .54611532 37.54639431 .54902744 .54809752

.54567259 37.54412697 .55328251 ]

.55164621 36.54463871 .55124908 37.54508354 .54749434 .5442795

.54626763 37.5428756 .54927527 37.54237281 . 54900635 . 54559367

.54641379 37.54457091 .54604713 37.54465794 .54763239 . 5457502

.54538459 37.54568946 .54615249 ]

RESULT
The Python program to elucidate value iteration in Gambler’s problem was developed
and executed successfully.
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EX.NO: 3 RANDOM WALK USING MARKOYV PROCESS
DATE:

AIM
To generate random walk using Markov process.

RANDOM WALK

A random walk is a process for traversing a graph where at every step an outgoing edge
chosen uniformly at random is followed. A Markov chain is similar except the outgoing edge
is chosen according to an arbitrary fixed distribution.

MARKOYV PROCESS

Markov process is a stochastic model that undergoes transitions from one state to
another in a probabilistic manner. This process has the Markov property, which states that the
future state depends only on the current state and not on the sequence of events that preceded
it.

PROBLEM STATEMENT

States are represented by 'A', 'B', 'C', and 'D', and the transition probabilities between
these states are defined in the transition probabilities dictionary. For each state, the dictionary
specifies the probability of transitioning to other states. The generate random_ walks function
takes a starting state and the number of steps as input. It simulates a random walk by choosing
the next state based on the transition probabilities defined in the transition probabilities
dictionary. The random.choices function is used to select the next state based on the provided
weights (transition probabilities). The program then generates multiple random walks, each
starting from state 'A’, and prints the sequence of states traversed in each walk.

Algorithm:
1. Identify all possible states of the system (e.g., positions on a line or graph).
2. Set up a transition matrix that defines the probabilities of moving from one state to

another, where each state’s movement follows a Markov process (i.e., the next state

depends only on the current state).

Choose an initial state to begin the random walk.

4. At each step, use the transition matrix to randomly move to the next state based on the
current state's transition probabilities.

5. Continue the random walk by repeating the process for a given number of steps or
until reaching a predefined stopping condition (e.g., hitting a boundary or returning to
the start).

6. After completing the walk, analyze the results to understand the behavior of the
random walk, such as expected time to return to the start or the distribution of states
visited.

98]
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PROGRAM
import random

import numpy as np

import matplotlib.pyplot as plt

numpy.random.seed()

prob =[0.4,0.6]

start =0

positions = [start]

rr = np.random.random(10)

downp = rr > prob[0]

upp = 11 < prob[ 1]

t=[i for i in range(0,11)]

for idownp, iupp in zip(downp, upp):
down = idownp
up = iupp
positions.append(positions[-1] - down + up)

plt.plot(t,positions,marker='0")

plt.show()

print(upp)

print(downp)
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OUTPUT

True True
True True
True True
True False
False True
False False
False False

False True

False]

False False
True False
True False
False True
True False
True True
True True
True False
True]

RESULT

True
False
True
False
True
False
True
True

False
True
True
True

False
True

False

False

True
True
True
True
False
False
False
True

False
True
True

False
True
True
True

False

The Python program to generate random walk using Markov process was developed

and executed successfully.
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EX.NO: 4a FRAMING TIC-TAC-TOE IN A RL WORLD USING POLICY
DATE: ITERATION

AIM
To develop a simple reinforcement learning algorithm for agents to learn the game tic-

tac-toe using value function using policy iteration.

PROBLEM STATEMENT: TIC-TAC-TOE GAME

Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two
players who take turns marking the spaces in a three-by-three grid with X or O. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner.
It is a solved game, with a forced draw assuming best play from both players. Tic-tac-toe is
played on a three-by-three grid by two players, who alternately place the marks X and O in one
of the nine spaces in the grid. In the following example, the first player (X) wins the game in
seven steps:

X O X O IX O X O IX O

O

O

O
XIOoIX

@)
©)
XiX

XIOIX

X X'l X X X

POLICY ITERATIONALGORITHM

A policy is a mapping from states to actions, i.e., given a state, how many cars should
Jack move overnight? Now, suppose Jack has some policy =, then given this &, the value of a
state (say s) is the expected reward that Jack would get when he starts from s and follows n
after that.

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and =(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A0
For each s € §:
v+ V{(s)
Vis) e« 2, pls'vls,m(8))[r + 4V (s)]
A — max(A, |[v — V(s)])
until A < ¢ (a small positive number)

3. Policy Improvement
policy-stable «— frue
For each s € §:
old-action « mw(s)
m(s) + argmax, > . p(s',r|s, a) [1" + ’,»'V(s’)]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 = 7.; else go to 2

Policy Iteration
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TIC TAC TOE PROBLEM FORMULATION

To formulate this reinforcement learning problem, the most important thing is to be
clear about the 3 major components — state, action, and reward. The state of this game is the
board state of both the agent and its opponent, so initialize a 3x3 board with zeros indicating
available positions and update positions with 1 if player 1 takes a move and -1 if player 2 takes
a move. The action is what positions a player can choose based on the current board state.
Reward is between 0 and 1 and is only given at the end of the game.

Player Setting
Create a player class to represents agent, and the player is able to:
e Choose actions based on current estimation of the states
e Record all the states of the game
e Update states-value estimation after each game
e Save and load the policy

State-Value update

To update value estimation of states, apply policy iteration which is updated based on
the formula below

Vis) «— > p(s,rls, m(s))[r + ¥V (s)]

Training
Now agent is able to learn by updating value estimation and our board is all set up, it

is time to let two players play against each other. During training, the process for each player
is:

e Look for available positions

e Choose action

e Update board state and add the action to player’s states

e Judge if reach the end of the game and give reward accordingly

Algorithm:
1. Represent all possible Tic-Tac-Toe board configurations as states.
2. Start with an initial policy (e.g., choose random moves) for each board configuration.
3. For each state, calculate the expected rewards by following the current policy. This
includes winning, losing, or drawing the game after a series of moves.
Update the value of each state based on future rewards.
For each state, try different actions (placing 'X' or 'O’ in an empty spot).
Update the policy with the action that maximizes the expected reward.
Repeat the policy evaluation and improvement steps until the policy becomes stable.
Once the policy has converged, the final policy is the optimal strategy that maximizes
the chances of winning the game for each board configuration.

® Nk
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PROGRAM
#Policy iteration

import random
def check winner(board):
win_conditions = [(0,1,2), (3,4,5), (6,7,8), (0,3,6), (1,4,7), (2,5,8), (0,4,8), (2,4,6)]
for cond in win_conditions:
if board[cond[0]] == board[cond[1]] == board[cond[2]] != 0:
return board[cond[0]]

return 0 if 0 not in board else None

def available moves(board):

return [i for 1, X in enumerate(board) if x == 0]

class TicTacToePolicylteration:
def init_ (self, discount=0.9, epsilon=1e-6):
self.discount = discount
self.epsilon = epsilon
self.values = {tuple(self.int _to board(b)): 0 for b in range(3**9)}

self.policy = {tuple(self.int _to board(b)):
random.choice(available moves(self.int_to board(b)))

for b in range(3**9) if available_moves(self.int_to board(b))}

defint to board(self, num):

return [(num // (3**1)) % 3 for i in range(9)]

def evaluate policy(self):
while True:
delta=0

for board in self.values:
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winner = check winner(list(board))

if winner is not None:
self.values[board] = 1 if winner == 1 else -1 if winner == 2 else 0
continue

move = self.policy[board]

new_board = list(board)

new_board[move] = 1 # Simulate player's move

reward = 1 if check winner(new_board) == 1 else -1 if check winner(new_board)
==2else 0

new_value = reward + self.discount * self.values[tuple(new_board)]
delta = max(delta, abs(self.values[board] - new_value))
self.values[board] = new_value

if delta < self.epsilon:

break

def improve policy(self):
policy stable = True
for board in self.policy:
old_action = self.policy[board]
best_action = None
best_value = -float('inf")
for move in available_moves(board):
new_board = list(board)
new_board[move] =1 # Simulate player's move
move value = self.values[tuple(new board)]
if move value > best_value:
best value = move value
best action = move
self.policy[board] = best_action

if old action != best_action:
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policy stable = False

return policy_stable

def policy _iteration(self):
while True:
self.evaluate policy()
if self.improve policy():
break

def get best_move(self, board):

return self.policy[tuple(board)]

def play(self):
board =[0] * 9
while True:
print_board(board)
if (winner := check winner(board)) is not None:

print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

break

board[self.get best move(board)] =1

if (winner := check winner(board)) is not None:
print_board(board)

print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

break

board[random.choice(available moves(board))] = 2

def print_board(board):
symbols = {0: -, 1:'X", 2:'0O'}
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for i in range(0, 9, 3):
print(f" {symbols[board[i]]} {symbols[board[i+1]]} {symbols[board[i+2]]}")
print()
game = TicTacToePolicylteration()

game.policy _iteration()

game.play()

OUTPUT

Result: Agent wins!

RESULT

The Python program to develop a simple reinforcement learning algorithm for agents
to learn the game tic-tac-toe using value function using policy iteration was developed and
executed successfully.
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EX.NO: 4b FRAMING TIC-TAC-TOE IN A RL WORLD USING VALUE
DATE: ITERATION

AIM
To develop a simple reinforcement learning algorithm for agents to learn the game tic-

tac-toe using value function.

PROBLEM STATEMENT: TIC-TAC-TOE GAME

Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two
players who take turns marking the spaces in a three-by-three grid with X or O. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner.
It is a solved game, with a forced draw assuming best play from both players. Tic-tac-toe is
played on a three-by-three grid by two players, who alternately place the marks X and O in one
of the nine spaces in the grid. In the following example, the first player (X) wins the game in

seven steps:
X O X QO IX O‘ ‘X o X O
®) O O
X X| | Xl X X

XIOIX

@)
©)
XiX

XIOX

VALUE ITERATIONALGORITHM

Value Iteration is a method for finding the optimal value function V* by solving the
Bellman equations iteratively. It uses the concept of dynamic programming to maintain a value
function V that approximates the optimal value function V*, iteratively improving V until it
converges to V* (or close to it).

Input: MDP M = (S, sy, A, P,(s' | 8),7(s,a,s’)
Output: Value function V'

Set V to arbitrary value function; e.g., V(s) = Oforall s
Repeat

A«+0
Foreachs € S

V'(8) < maxX,ca(s) Y,

Bellman equation
A +— max(A, |V'(s) = V(s)|)
Vv,
UntilA <6

Value Iteration
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TIC TAC TOE PROBLEM FORMULATION

To formulate this reinforcement learning problem, the most important thing is to be
clear about the 3 major components — state, action, and reward. The state of this game is the
board state of both the agent and its opponent, so initialize a 3x3 board with zeros indicating
available positions and update positions with 1 if player 1 takes a move and -1 if player 2 takes
a move. The action is what positions a player can choose based on the current board state.
Reward is between 0 and 1 and is only given at the end of the game.

Player Setting
Create a player class to represents agent, and the player is able to:

e Choose actions based on current estimation of the states
e Record all the states of the game

e Update states-value estimation after each game

e Save and load the policy

State-Value update

To update value estimation of states, apply value iteration which is updated based on
the formula below

V(S:) «— V(S:) + [V(St+1) _ V(s,,)]

Training
Now agent is able to learn by updating value estimation and our board is all set up, it

is time to let two players play against each other. During training, the process for each player
is:

e Look for available positions

e Choose action

o Update board state and add the action to player’s states

o Judge if reach the end of the game and give reward accordingly

Algorithm:

1. Represent all possible Tic-Tac-Toe board configurations as states.

2. Assign an initial value to each state, typically starting with O for all states except
terminal states (win, loss, draw).

3. For each possible board configuration, calculate the expected reward for each possible
action (placing 'X' or 'O’ in an empty space).

4. For each state, update its value by selecting the action that maximizes the expected
reward, considering the outcomes of winning, losing, or drawing after the move.

5. Repeat the process for all states until the values converge.

6. Once the values stabilize, derive the optimal policy by selecting the action that leads
to the highest value for each state (i.c., the best move for any board configuration).
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PROGRAM

#Value iteration
import random
def check winner(board):
win_conditions = [(0,1,2), (3,4,5), (6,7,8), (0,3,6), (1,4,7), (2,5,8), (0,4,8), (2,4,6)]
for cond in win_conditions:
if board[cond[0]] == board[cond[1]] == board[cond[2]] != 0:
return board[cond[0]]
return 0 if 0 not in board else None
def available moves(board):
return [i for 1, X in enumerate(board) if x == 0]
class TicTacToeValuelteration:
def init_ (self, discount=0.9, epsilon=1e-6):
self.discount = discount
self.epsilon = epsilon

self.values = {tuple(self.int to board(b)): 0 for b in range(3**9)}

defint_to board(self, num):

return [(num // (3**1)) % 3 for i in range(9)]

def value _iteration(self):
while True:
delta=0
new_values = self.values.copy()
for board in self.values:

winner = check winner(list(board))
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if winner is not None:
new_values[board] = 1 if winner == 1 else -1 if winner ==
continue

best_value = -float('inf")

for move in available moves(board):
new_board = list(board)

new_board[move] = 1 # Simulate player's move

else 0

reward = 1 if check winner(new_board) == 1 else -1 if check winner(new_board)

==2¢else 0

move_value = reward + self.discount * self.values[tuple(new_board)]

best _value = max(best_value, move value)
delta = max(delta, abs(self.values[board] - best value))
new_values[board] = best_value
self.values = new_values
if delta < self.epsilon:

break

def get_best move(self, board):

best move = None

best value = -float('inf")

for move in available moves(board):
new_board = list(board)
new_board[move] = 1 # Simulate player's move
move value = self.values[tuple(new_board)]
if move value > best value:

best value = move value

best move = move
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return best move
def play(self):
board =[0] * 9
while True:
print_board(board)
if (winner := check winner(board)) is not None:

print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

break
board[self.get best move(board)] =1
if (winner := check winner(board)) is not None:

print_board(board)

print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else
"Opponent wins!")

break

board[random.choice(available moves(board))] = 2

def print_board(board):
symbols = {0: -, 1: 'X", 2:'0O'}
for i in range(0, 9, 3):
print(f" {symbols[board[i]]} {symbols[board[i+1]]} {symbols[board[i+2]]}")

print()

# Run the game
game = TicTacToeValuelteration()
game.value_iteration()

game.play()

Roll No: 21272105020xx Page No: 23




OUTPUT

Result: Agent wins!

RESULT

The Python program to develop a simple reinforcement learning algorithm for agents
to learn the game tic-tac-toe using value function using value iteration was developed and
executed successfully.
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EX.NO: 5 BLACKJACK WITH FIRST VISIT MONTE CARLO
DATE:

AIM
To implement First-Visit Monte Carlo Policy evaluation for Blackjack game.

BLACKJACK - PROBLEM STATEMENT

The game begins with two cards dealt to both dealer and player. One of the dealer’s
cards is face up and the other is face down. If the player has 21 immediately (an ace and a 10-
card), it is called a natural. He then wins unless the dealer also has a natural, in which case the
game is a draw. If the player does not have a natural, then he can request additional cards, one
by one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes bust, he loses;
if he sticks, then it becomes the dealer’s turn. The dealer hits or sticks according to a fixed
strategy without choice: he sticks on any sum of 17 or greater, and hits otherwise. If the dealer
goes bust, then the player wins; otherwise, the outcome — win, lose, or draw — is determined
by whose final sum is closer to 21. If the player holds an ace that he could count as 11 without
going bust, then the ace is said to be usable.

The Pack

The standard 52-card pack is used, but in most casinos several decks of cards are
shuffled together. The six-deck game (312 cards) is the most popular. In addition, the dealer
uses a blank plastic card, which is never dealt, but is placed toward the bottom of the pack to
indicate when it will be time for the cards to be reshuffled. When four or more decks are used,
they are dealt from a shoe (a box that allows the dealer to remove cards one at a time, face
down, without actually holding one or more packs).

Object of the Game
Each participant attempts to beat the dealer by getting a count as close to 21 as
possible, without going over 21.

Card Values/scoring
It is up to each individual player if an ace is worth 1 or 11. Face cards are 10 and any
other card is its pip value.

Betting

Before the deal begins, each player places a bet, in chips, in front of them in the
designated area. Minimum and maximum limits are established on the betting, and the general
limits are from $2 to $500.
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The Play

The player to the left goes first and must decide whether to "stand" (not ask for another
card) or "hit" (ask for another card in an attempt to get closer to a count of 21, or even hit 21
exactly). Thus, a player may stand on the two cards originally dealt to them, or they may ask
the dealer for additional cards, one at a time, until deciding to stand on the total (if it is 21 or
under), or goes "bust" (if it is over 21). In the latter case, the player loses and the dealer collects
the bet wagered. The dealer then turns to the next player to their left and serves them in the
same manner.

The combination of an ace with a card other than a ten-card is known as a "soft hand,"
because the player can count the ace as a 1 or 11, and either draw cards or not. For example
with a "soft 17" (an ace and a 6), the total is 7 or 17. While a count of 17 is a good hand, the
player may wish to draw for a higher total. If the draw creates a bust hand by counting the ace
as an 11, the player simply counts the ace as a 1 and continues playing by standing or "hitting"
(asking the dealer for additional cards, one at a time).

The Dealer's Play

When the dealer has served every player, the dealer’s face-down card is turned up. If
the total is 17 or more, it must stand. If the total is 16 or under, they must take a card. The
dealer must continue to take cards until the total is 17 or more, at which point the dealer must
stand. If the dealer has an ace, and counting it as 11 would bring the total to 17 or more (but
not over 21), the dealer must count the ace as 11 and stand. The dealer's decisions, then, are
automatic on all plays, whereas the player always has the option of taking one or more cards.

Signaling Intentions

When a player's turn comes, they can say "Hit" or can signal for a card by scratching
the table with a finger or two in a motion toward themselves, or they can wave their hand in
the same motion that would say to someone "Come here!" When the player decides to stand,
they can say "Stand" or "No more," or can signal this intention by moving their hand sideways,
palm down and just above the table.

Splitting Pairs

If a player's first two cards are of the same denomination, such as two jacks or two
sixes, they may choose to treat them as two separate hands when their turn comes around. The
amount of the original bet then goes on one of the cards, and an equal amount must be placed
as a bet on the other card. The player first plays the hand to their left by standing or hitting one
or more times; only then is the hand to the right played. The two hands are thus treated
separately, and the dealer settles with each on its own merits. With a pair of aces, the player is
given one card for each ace and may not draw again. Also, if a ten-card is dealt to one of these
aces, the payoff'is equal to the bet (not one and one-half to one, as with a blackjack at any other
time).
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Doubling Down

Another option open to the player is doubling their bet when the original two cards dealt
total 9, 10, or 11. When the player's turn comes, they place a bet equal to the original bet, and
the dealer gives the player just one card, which is placed face down and is not turned up until
the bets are settled at the end of the hand. With two fives, the player may split a pair, double
down, or just play the hand in the regular way. Note that the dealer does not have the option of
splitting or doubling down.

FIRST-VISIT MONTE CARLO POLICY EVALUATION

Initialize:
7 «— policy to be evaluated
V «— an arbitrary state-value function
Returns(s) « an empty list, for all s € S

Repeat forever:
(a) Generate an episode using 7
(b) For each state s appearing in the episode:
R « return following the first occurrence of s
Append R to Returns(s)
V (8) < average(Returns(s))

ALGORITHM

1. Simulate the Blackjack environment

2. Define the policy function which takes the current state and check if the score is
greater than or equal to 20, if yes we return 0 else we return 1. i.e If the score is
greater than or equal to 20 we stand (0) else we hit (1)

3. Define a function called generate episode for generating epsiodes

4. Perform First Visit MC Prediction

5. Define the function plot_blackjack for plotting the value function and we can see how
our value function is attaining the convergence.

PROGRAM

import numpy as np

import random

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from collections import defaultdict
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card values = {'2":2,'3":3,'4": 4,'5" 5,'6" 6,'7":7,'8" §,'9": 9, '10": 10, J": 10, 'Q": 10, 'K": 10,

‘A" 11}
def deal card():

return random.choice(list(card values.keys()))

def get hand value(hand):
value = sum(card_values[card] for card in hand)
num_aces = hand.count('A")
while value > 21 and num_aces:
value -=10
num_aces -= 1

return value

def blackjack policy(hand):

return 'hit' if get hand value(hand) < 20 else 'stand'

def play_blackjack(policy):
player hand = [deal card(), deal card()]
dealer hand = [deal card(), deal card()]
while policy(player hand) == 'hit":
player _hand.append(deal card())
if get hand value(player hand) > 21:
return -1 # Player busts
while get hand value(dealer hand) < 17:
dealer hand.append(deal card())
if get hand value(dealer hand) > 21:
return 1 # Dealer busts
player value = get hand value(player hand)
dealer value = get hand value(dealer hand)

if player value > dealer value:
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return 1 # Player wins

elif player value < dealer value:
return -1 # Dealer wins

else:

return 0 # Tie

def first_visit monte_ carlo(num_episodes):
state_action_returns = defaultdict(list)
state_action_counts = defaultdict(int)
Q = defaultdict(float)
for episode in range(num_episodes):
player hand = [deal card(), deal card()]
episode trace =[]
while True:
action = blackjack policy(player hand)
episode_trace.append((tuple(player hand), action))
if action == 'hit":
player hand.append(deal card())
if get hand value(player hand) > 21:
episode_trace.append((tuple(player hand), 'bust'))
break
else:
break
reward = play blackjack(blackjack policy)
for state, action in episode_trace:
if action != "bust'":
state action_returns[(state, action)].append(reward)

state_action_counts[(state, action)] += 1
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for state action, returns in state_action_returns.items():
QJstate_action] = np.mean(returns)

return Q, state action_counts

def plot 3d(Q):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")

x =]
y=1
z=]

for (state, action), value in Q.items():
if action == 'hit":
x.append(get _hand value(state))
y.append(1) # hit
elif action == 'stand":
x.append(get hand value(state))
y.append(0) # stand
z.append(value)
ax.scatter(x, y, z, ¢c="r', marker='0")
ax.set_xlabel('Hand Value')
ax.set_ylabel('Action')
ax.set_zlabel("Value Estimate')
ax.set_yticks([0, 1])
ax.set_yticklabels(['Stand', 'Hit'])

plt.show()

def plot_line(Q):
hand values = sorted(set(get hand value(state) for state, action in Q.keys()))

actions = ['stand’, 'hit']
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values_hit = [Q.get((tuple([str(value)] * 2), 'hit"), 0) for value in hand values]

values_stand = [Q.get((tuple([str(value)] * 2), 'stand"), 0) for value in hand values]

plt.figure(figsize=(10, 6))

plt.plot(hand values, values_hit, label="Hit', color="blue', marker='0")
plt.plot(hand values, values_stand, label='Stand', color="green', marker='0")
plt.xlabel('"Hand Value')

plt.ylabel('Value Estimate')

plt.title('State-Action Value Function: Hit vs Stand")

plt.legend()

plt.grid(True)

plt.show()

# Main execution
num_episodes = 1000

Q, state_action_counts = first_visit monte carlo(num_episodes)

# Print some of the results
print("State-Action Value Estimates:")
for (state, action), value in sorted(Q.items()):

print(f"State: {state}, Action: {action}, Value: {value:.2f}")

# Plot the 3D representation

plot_3d(Q)

# Plot the line representation

plot_line(Q)

Roll No: 21272105020xx Page No: 31




OUTPUT

value function without usable ace

ctata vialiia

ctata vinliia

RESULT
The Python program to implement First-Visit Monte Carlo Policy evaluation for
Blackjack game was developed and executed successfully.
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EX.NO: 6 EVALUATE WINDY GRID WORLD WITH KING’S MOVES
DATE:

AIM
To evaluate Windy GridWorld environment using SARSA method.

SARSA ALGORITHM FOR A WINDY GRIDWORLD ENVIRONMENT

A standard gridworld Figure 1, with start and goal states, but with one difference: there
is a crosswind upward through the middle of the grid. The actions are the standard four up,
down, right, and left but in the middle region the resultant next states are shifted upward by a
wind, the strength of which varies from column to column. The strength of the wind is given
below each column, in number of cells shifted, upward. For example, if you are one cell to the
right of the goal, then the action left takes you to the cell just above the goal. Let us treat this
as an undiscounted episodic task, with constant rewards of 1 until the goal state is reached.
Figure 6.11 shows the result of applying-greedy Sarsa to this task, with = 01, =05, and the
initial values Q(sa) = 0 for all sa. The increasing slope of the graph shows that the goal is
reached more and more quickly over time. By 8000 time steps, the greedy policy (shown inset)
was long since optimal; continued-greedy exploration kept the average episode length at about
17 steps, two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used on this task because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would never end.
Step-by-step learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else

standard king's
moves moves

O 00111221020

Figure 1: Windy Grid World
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Initialize V() arbitrarily (but set to 0 if s is terminal)
‘/ul(l «~0
Repeat (for each episode):
Initialize E(s) =0, for all s € 8
Initialize S
Repeat (for each step of episode):
A + action given by 7 for S
Take action A, observe reward, R, and next state, S’
A« V(S) - Vol(l
VZ)](I — V(S/)
d«— R+~V(S) - V(S)
E(S)+ (1-a)E(S)+1
For all s € §:
V(s) < V(s)+a(d+A)E(s)
E(s) < vAE(s)
V(S) « V(S) — aA
S« 9
until S is terminal

Figure 2 On-policy TD Control Algorithm- SARSA

The SARSA algorithm works by carrying out actions based on rewards received from
previous actions. To do this, SARSA stores a table of state (S)-action (A) estimate pairs for
each Q-value. This table is known as a Q-table, while the state-action pairs are denoted as
Q(S, A). The SARSA process starts by initializing Q(S, A) to arbitrary values Figure 2. In
this step, the initial current state (S) is set, and the initial action (A) is selected by using an
epsilon-greedy algorithm policy based on current Q-values. An epsilon-greedy policy
balances the use of exploitation and exploration methods in the learning process to select the
action with the highest estimated reward.

ALGORITHM:
1. START
2. Initialize the rewards, state space, and hyperparameters:
a. State space S: The set of possible states (e.g., battery levels for the robot).
b. Action space A: The set of possible actions (e.g., search, wait, recharge).
c. Initialize the Q-table Q(s,a) with random values or zeros for all state-action
pairs.
d. Set hyperparameters: Learning rate a, discount factor y, and exploration rate €.
3. Define the reward function, that takes the current state s and action a as inputs and
returns the reward r.
4. Define the state transition function, that takes the current state s and action a as
inputs and returns next s’ state.
5. Implement SARSA Algorithm for given environment.
6. After completing all the episodes, display the plots and optimal policy.
7. STOP

PROGRAM:
import numpy as np
import matplotlib
matplotlib.use('Agg")
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import matplotlib.pyplot as plt

# World dimensions

WORLD HEIGHT =7

WORLD WIDTH = 10

# Wind strength for each column

WIND =[0,0,0,1,1,1,2,2,1, 0]

# Possible actions (including King's moves)
ACTION UP=0

ACTION DOWN =1

ACTION _LEFT =2

ACTION RIGHT =3

ACTION _UP_LEFT =4

ACTION _UP_RIGHT =5

ACTION _DOWN_LEFT =6

ACTION DOWN RIGHT =7

# Probability for exploration

EPSILON = 0.1

# Learning rate

ALPHA =0.5

# Reward for each step

REWARD =-1.0

# Start and Goal positions

START =[3, 0]

GOAL =3, 7]

# All possible actions

ACTIONS =[ACTION_UP, ACTION _DOWN, ACTION_LEFT, ACTION RIGHT,
ACTION_UP_LEFT, ACTION UP RIGHT, ACTION DOWN_LEFT,
ACTION _DOWN_RIGHT]

def step(state, action):
1, ] = state
if action == ACTION_UP:
return [max(i - 1 - WIND([j], 0), j]
elif action == ACTION_DOWN:
return [max(min(i + 1 - WIND[j], WORLD_ HEIGHT - 1), 0), j]
elif action == ACTION_LEFT:
return [max(i - WINDJj], 0), max(j - 1, 0)]
elif action == ACTION_RIGHT:
return [max(i - WINDJ[j], 0), min(j + 1, WORLD WIDTH - 1)]
elif action == ACTION_UP_ LEFT:
return [max(i - 1 - WIND[max(j - 1, 0)], 0), max(j - 1, 0)]
elif action == ACTION_UP_ RIGHT:
return [max(i - 1 - WIND[min(j + 1, WORLD WIDTH - 1)], 0), min(j + 1,
WORLD WIDTH - 1)]
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elif action == ACTION_DOWN_LEFT:
return [max(min(i + 1 - WIND[max(j - 1, 0)], WORLD HEIGHT - 1), 0), max(j - 1, 0)]
elif action == ACTION_DOWN_RIGHT:
return [max(min(i + 1 - WIND[min(j + 1, WORLD WIDTH - 1)], WORLD_ HEIGHT -
1), 0), min(j + 1, WORLD_ WIDTH - 1)]
else:
assert False
def episode(q_value):
time =0
state = START
if np.random.binomial(1, EPSILON) == 1:
action = np.random.choice(ACTIONS)
else:
values_ = q_value([state[0], state[1], :]
action = np.random.choice([action_ for action_, value in enumerate(values ) if value
== np.max(values )])
while state != GOAL:
next_state = step(state, action)
if np.random.binomial(1, EPSILON) == 1:
next_action = np.random.choice(ACTIONS)
else:
values = q_value[next_state[0], next_state[1], :]
next_action = np.random.choice([action_ for action_, value in enumerate(values ) if
value == np.max(values )])
# Q-learning update rule
q_value[state[0], state[ 1], action] +=\
ALPHA * (REWARD + np.max(q_value[next_state[0], next_state[1], :]) -
q_value[state[0], state[1], action])
state = next_state
action = next_action
time += 1
return time
def figure 6 3():
q_value = np.zeros((WORLD_ HEIGHT, WORLD_ WIDTH, len(ACTIONS)))
episode_limit = 500
steps =[]
ep=0
while ep < episode_limit:
steps.append(episode(q_value))
ep+=1
steps = np.add.accumulate(steps)
plt.plot(steps, np.arange(1, len(steps) + 1))
plt.xlabel('Time steps')
plt.ylabel('Episodes')
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plt.savefig('figure 6 3.png")
plt.close()
optimal policy =[]
for i in range(0, WORLD_ HEIGHT):
optimal_policy.append([])
for j in range(0, WORLD_ WIDTH):
if [i, j] == GOAL:
optimal policy[-1].append('G")
continue
bestAction = np.argmax(q_value[i, j, :])
if bestAction == ACTION_UP:
optimal_policy[-1].append('U")
elif bestAction == ACTION_DOWN:
optimal_policy[-1].append('D")
elif bestAction == ACTION_LEFT:
optimal policy[-1].append('L")
elif bestAction == ACTION_ RIGHT:
optimal_policy[-1].append('R")
elif bestAction = ACTION_UP_LEFT:
optimal policy[-1].append('UL")
elif bestAction = ACTION_UP_ RIGHT:
optimal policy[-1].append('UR")
elif bestAction == ACTION_DOWN _LEFT:
optimal policy[-1].append('LL")
elif bestAction == ACTION_DOWN_RIGHT:
optimal policy[-1].append('LR")

print('Optimal policy is:")
for row in optimal policy:
print(row)
print('"Wind strength for each column:\n{}'.format([str(w) for w in WIND])
if name ==' main "
figure 6 _3()
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OUTPUT

Optimal policy is:

[‘oo', ‘LL', 'D', 'UL', 'R', 'UR', 'R', 'UR', 'LR', 'D']
['UR', "LR', 'D', "LR', 'LL', 'LL', 'R', 'LR', 'LR', 'D']
['LR", "LR', 'LR", 'LL", 'LL", "LL', 'LR', 'LR', 'LR', 'LR']
LR R D L [ LT L LR G LR D ]
['LR', "LR', 'D', 'LL', 'LR', 'U', 'LR', 'D', L', 'L']
[FLERESRESRESEIRS IR SRR U S S L]
['UR', "LL', 'LR', 'R', 'R', 'R', 'U', 'U', L', 'LL"]

Wind strength for each column:

['e', '@', '@', '1', '1', "1', '2', '2', '1', '0']

500 A

400 A

&
<3

Episodes

200 +

100 A

L)

2000 4000 6000 8000 10000
Time steps

RESULT

Thus, the evaluation of Windy Grid World environment with King’s move using
SARSA method has been implemented and executed successfully.
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EX.NO: 7 OFF-POLICY TD CONTROL ALGORITHM FOR CLIFF
DATE: WALKING

AIM
To implement the Off-Policy TD algorithm known as Q-learning for Cliff Walking.

PROBLEM STATEMENT - CLIFF WALKING

The cliff walking problem is a grid problem with a 4 x 12 board. The agent starts in the
bottom left corner and must reach the bottom right corner. The agent must step into the cliff
that segregates those tiles.

R=-1
Safer path
Optimal path I 1
| ; \J
S The Cliff G
R=-100

A) Define the Environment

1. Create a gridworld representation of the environment with states, actions, and
rewards.

2. Define the state space, which includes the agent's position on the grid.

Define the action space, which includes possible movements (up, down, left, right).

4. Specify rewards and penalties for different states and actions. In cliff-walking, we
typically have a large negative reward for falling off the cliff.

98]

B) Initialize Q-Table to values of 0s

Initialize Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g.. s-greedy)
Take action a, observe r, s
Q(s.a) — Q(s,a) (n[r ~ max, Q(s',a’) Q(N.u)]

als
S — 8

until s is terminal
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PROGRAM:

import numpy as np

ROWS =4

COLS =12

S=(3,0)

G=(3,11)

class Cliff:

def init_ (self):

self.end = False
self.pos =S
self.board = np.zeros([4, 12])
# add cliff marked as -1
self.board[3, 1:11]=-1

def nxtPosition(self, action):

if action == "up":

nxtPos = (self.pos[0] - 1, self.pos[1])
elif action == "down":

nxtPos = (self.pos[0] + 1, self.pos[1])
elif action == "left":

nxtPos = (self.pos[0], self.pos[1] - 1)
else:

nxtPos = (self.pos[0], self.pos[1] + 1)
# check legitimacy
if nxtPos[0] >= 0 and nxtPos[0] <= 3:

if nxtPos[1] >= 0 and nxtPos[1] <= 11:

self.pos = nxtPos
if self.pos == G:
self.end = True

print("Game ends reaching goal")
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if self.board[self.pos] == -1:
self.end = True
print("Game ends falling off cliff")

return self.pos

def giveReward(self):
# give reward
if self.pos == Gt
return -1
if self.board[self.pos] == 0:
return -1

return -100

def show(self):
for i in range(0, ROWS):

print(' "
out=""
for j in range(0, COLS):
if self.board[i, j] == -1:
token = "*'
if self.board[i, j] == 0:
token ="'0'

if (i, j) == self.pos:

token ="'S'
if (i,)) = G:
token ='G'

out += token +"'|'

print(out)

print(' ")
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class Agent:
def init (self, exp rate=0.3, Ir=0.1, sarsa=True):
self.cliff = Cliff()
self.actions = ["up", "left", "right", "down"]
self.states =[] # record position and action of each episode
self.pos =S
self.exp_rate = exp_rate
self.lr =1Ir
self.sarsa = sarsa
self.state _actions = {}
for i in range(ROWS):
for j in range(COLS):
self.state actions[(i, )] = {}
for a in self.actions:

self.state _actions|[(i, j)][a] =0

def chooseAction(self):
# epsilon-greedy
mx_nxt _reward = -999
action=""
if np.random.uniform(0, 1) <= self.exp_rate:
action = np.random.choice(self.actions)
else:
# greedy action
for a in self.actions:
current_position = self.pos
nxt_reward = self.state_actions[current position][a]
if nxt_reward >= mx_nxt_reward:
action =a

mx_nxt reward = nxt reward
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return action

def reset(self):
self.states =[]
self.cliff = Cliff()

self.pos =S

def play(self, rounds=10):
for _in range(rounds):
while 1:
curr_state = self.pos
cur_reward = self.cliff.giveReward()
action = self.chooseAction()
# next position
self.cliff.pos = self.cliff.nxtPosition(action)
self.pos = self.cliff.pos
self.states.append([curr_state, action, cur_reward])
if self.cliff.end:
break
# game end update estimates
reward = self.cliff.giveReward()
print("End game reward", reward)
# reward of all actions in end state is same
for a in self.actions:
self.state actions[self.pos][a] = reward
if self.sarsa:
for s in reversed(self.states):
pos, action, r = s[0], s[1], s[2]
current_value = self.state_actions[pos][action]

reward = current_value + self.lr * (r + reward - current_value)
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self.state actions[pos][action] = round(reward, 3)

else:

for s in reversed(self.states):

pos, action, r = s[0], s[1], s[2]
current_value = self.state_actions[pos][action]
reward = current_value + self.lr * (r + reward - current_value)
self.state actions[pos][action] = round(reward, 3)
# update using the max value of S'
reward = np.max(list(self.state_actions[pos].values())) # max

self.reset()

def showRoute(states):
board = np.zeros([4, 12])
# add cliff marked as -1
board[3, 1:11]=-1
for i in range(0, ROWS):

print(' ")
out=""
for j in range(0, COLS):
token ='0'
if board[i, j] == -1:
token = "*'

if (i, j) in states:

token="R'
if (i, ) =G:
token ='G'

out += token +"'|'

print(out)

print(' "
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n

if name ==" main_":
print("sarsa training ... ")
ag = Agent(exp_rate=0.1, sarsa=True)
ag.play(rounds=500)
# Sarsa
ag_op = Agent(exp_rate=0)
ag_op.state actions = ag.state actions
states = []
while 1:
curr_state = ag_ op.pos
action = ag_op.chooseAction()
states.append(curr_state)
print("current position {} |action {}".format(curr_state, action))
# next position
ag_op.cliff.pos = ag_op.cliff.nxtPosition(action)
ag_op.pos = ag_op.cliff.pos
if ag_op.cliff.end:
break
showRoute(states)
print("g-learning training ... ")
ag = Agent(exp_rate=0.1, sarsa=False)
ag.play(rounds=500)
# Q-learning
ag_op = Agent(exp_rate=0)
ag_op.state actions = ag.state actions
states =[]
while 1:
curr_state = ag_op.pos
action = ag_op.chooseAction()

states.append(curr_state)
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print(“current position {} |action {}”.format(curr_state, action))
# next position
ag_op.cliff.pos = ag_op.cliff.nxtPosition(action)
ag op.pos = ag_op.cliff.pos
if ag_op.cliff.end:
break

showRoute(states)

OUTPUT

current position (3, 0) |action up
current position (2, 0) |action right
current position (2, 1) |action right
current position (2, 2) |action right
current position (2, 3) |action right
current position (2, 4) |action right
current position (2, 5) |action right
current position (2, 6) |action right
current position (2, 7) |action right
current position (2, 8) |action right
current position (2, 9) |action right
current position (2, 10) |action right
current position (2, 11) |action down

Game ends reaching goal

RESULT

Thus, the implementation of the Off-Policy TD algorithm known as Q-learning for Cliff

Walking is executed successfully and output is verified.
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EX.NO: 8 ON-POLICY TD CONTROL ALGORITHM FOR FROZEN
DATE: LAKE

AIM
To implement On-Policy TD algorithm known as SARSA for Frozen Lake

environment.

ON-POLICY TD CONTROL ALGORITHM: SARSA

State-action-reward-state-action (SARSA) is an on-policy reinforcement learning
algorithm used to teach a new Markov decision process policy. It’s an algorithm where, in the
current state (S), an action (A) is taken and the agent gets a reward (R), and ends up in the next
state (S1), and takes action (A1) in S;. Therefore, the tuple (S, A, R, Si, A1) stands for the
acronym SARSA. It’s called an on-policy algorithm because it updates the policy based on
actions taken.

PROBLEM STATEMENT

In frozen lake environment, the Al agent must cross the frozen lake from the start to the
goal, without falling into the holes.

€

Ve,
Frozen Lake Environment

The SARSA algorithm works by carrying out actions based on rewards received from
previous actions. To do this, SARSA stores a table of state (S)-action (A) estimate pairs for
each Q-value. This table is known as a Q-table, while the state-action pairs are denoted as Q(S,
A). Exploitation involves using already known, estimated values to get more previously earned
rewards in the learning process. Exploration involves attempting to find new knowledge on
actions, which may result in short-term, sub-optimal actions during learning but may yield
long-term benefits to find the best possible action and reward. From here, the selected action
is taken, and the reward (R) and next state (S1) are observed. Q(S, A) is then updated, and the
next action (A1) is selected based on the updated Q-values. Action-value estimates of a state
are also updated for each current action-state pair present, which estimates the value of

=

receiving a reward for taking a given action.

The above steps of R through A1 are repeated until the algorithm’s given episode ends,
which describes the sequence of states, actions and rewards taken until the final (terminal) state
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is reached. State, action and reward experiences in the SARSA process are used to update Q(S,
A) values for each iteration.

ALGORITHM

1. Initialize the environment and Q-table with zeros.

2. Train using the SARSA algorithm, updating Q-values via the state-action reward

dynamics.

3. Evaluate the learned policy periodically to track average rewards.

4. Visualize the agent's performance by rendering its actions in the environment.

5. Analyze results to check if the target average reward was achieved and demonstrate
success.

PROGRAM

import numpy as np
import gym
from tqdm import tqdm
import time
def epsilon_greedy policy(Q, state, epsilon):
if np.random.uniform(0, 1) < epsilon:
return np.random.choice(len(Q[state]))
else:
return np.argmax(Q[state])
def sarsa(env, num_episodes, alpha=0.5, gamma=0.99, epsilon=0.5, eval every=100):
Q = np.zeros([env.observation_space.n, env.action_space.n])
pbar = tqdm(total=num_episodes, dynamic_ncols=True)
avg_rewards =[] # To track average rewards over episodes
for episode in range(num_episodes):
state, = env.reset()
action = epsilon_greedy policy(Q, state, epsilon)
done = False
episode _reward =0
while not done:
next_state, reward, done, , = env.step(action)
next_action = epsilon_greedy policy(Q, next state, epsilon)
td_target = reward + gamma * Q[next_state, next action]
td_error =td_target - Q[state, action]
Q[state, action] += alpha * td_error
state, action = next_state, next action
episode reward += reward

pbar.update(1)
# Track average rewards
if episode % eval every == 0:

avg_reward = evaluate policy(env, Q, eval every)
avg rewards.append(avg_reward)
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pbar.set_description(f" Average reward: {avg reward:.2f}")

pbar.close()
return Q, avg_rewards # Ensure both values are returned

def evaluate policy(env, Q, num_episodes):
total reward =0
policy = np.argmax(Q, axis=1)
for episode in range(num_episodes):
observation, = env.reset()
done = False
episode reward = 0
while not done:
action = policy[observation]
observation, reward, done, , = env.step(action)
episode reward += reward
total reward += episode reward
return total reward / num_episodes
def demo_agent(env, Q, num_episodes=1):
policy = np.argmax(Q, axis=1)
for episode in range(num_episodes):
observation, = env.reset()
done = False
print("\nEpisode:", episode + 1)
while not done:
env.render()
action = policy[observation]
observation, ,done, , = env.step(action)
env.render()
env.close()
def main():
env = gym.make("FrozenLake-v1")
num_episodes = 10000

Q sarsa, avg_rewards = sarsa(env, num_episodes)

# Find episodes required to reach optimal average reward

target avg reward = 0.8 # Define your target average reward

optimal episode = next((i * 100 for i, reward in enumerate(avg_rewards) if reward >=
target avg reward), None)

if optimal_episode is not None:

print(f'Optimal average reward achieved after {optimal episode} episodes.")
else:

print("Optimal average reward not achieved within the training episodes.")

avg_reward = evaluate policy(env, Q sarsa, num_episodes)
print(f" Average reward after SARSA: {avg reward}")

visual env = gym.make('FrozenLake-v1', render mode="human')
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demo_agent(visual env, Q sarsa, num_episodes)

'

if name ==' main "
main()

OUTPUT:

{4 Frozen Lake = X

%
? &

RESULT:

Hence On - policy TD algorithm for Frozen Lake was successfully implemented.
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EX.NO: 9 ONLINE TABULAR TD ALGORITHM FOR CLIFFWALKING
DATE:

AIM
To implement online tabular temporal difference algorithm for Cliff Walking.

TRUE ONLINE TEMPORAL DIFFERENCE ALGORITHM

1. Initialize Q-Values:
Initialize the Q-values (action-values) for all state-action pairs arbitrarily, e.g.,
to zeros.
2. Set Hyperparameters:
Define the learning rate (alpha), discount factor (gamma), and lambda () for
eligibility traces.
3. Initialize Eligibility Traces:
Initialize eligibility traces for each state-action pair to zero.
4. Repeat for each episode:
a. Initialize the starting state (S).
b. Initialize eligibility traces to zero for the new episode.
c. Repeat for each time step within the episode:
i. Choose an action (A) based on a policy (e.g., epsilon-greedy).
ii. Take the action and observe the reward (R) and the new state (S").
iii. Calculate the TD error (delta):
- delta =R + gamma * Q(S', A) - Q(S, A)
iv. Update the eligibility traces for the current state-action pair:
- E(S, A) = gamma * lambda * E(S, A) + 1
v. Update the Q-value for the current state-action pair using the True Online
TD update
rule:
- Q(S, A)=Q(S, A) + alpha * delta * E(S, A)
vi. Update the eligibility traces for all state-action pairs:
- E(S, A) = gamma * lambda * E(S, A)
vii. Set the current state to the new state (S = S").
d. Repeat until the episode ends.
Input: the policy 7 to be evaluated
Initialize V (s) arbitrarily (e.g., V(s) =0,Vs € 8")
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A « action given by 7 for S
Take action A; observe reward, R, and next state, S’
V(S) < V(S)+ a[R + 4V (S") — V(S)]
S« S

until S is terminal
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ALGORITHM:

1. Initialize Q-table, learning rate, discount factor, and exploration parameters.

2. For each episode, reset the environment and initialize total reward.

3. Select actions using €\epsilone-greedy policy, perform the action, and observe the next
state, reward, and done flag.

4. Update the Q-value for the current state and action based on the reward and the
maximum Q-value of the next state.

5. Accumulate the reward, move to the next state, and repeat until the episode ends.

Record the total reward, decay the exploration rate, and continue to the next episode.

7. After training, visualize the total rewards and Q-value heatmap.

=

PROGRAM
import numpy as np
import gym

import pygame
import imageio
import random

class TDAgent:
def init_ (self, n_states, n_actions, alpha=0.1, gamma=0.99, epsilon=0.1):

self.n_states =n_states
self.n_actions =n_actions
self.alpha = alpha
self.gamma = gamma
self.epsilon = epsilon
self.Q = np.zeros((n_states, n_actions))

def choose_action(self, state):
if np.random.uniform(0, 1) < self.epsilon:
return np.random.choice(self.n_actions)
else:
return np.argmax(self.Q[state, :])

def update(self, state, action, reward, next_state):
predict = self.Q[state, action]
target = reward + self.gamma * np.max(self.Q[next_state, :])
self.Q[state, action] += self.alpha * (target - predict)

def train(agent, env, episodes, render=False):
rewards = []
for episode in range(episodes):
state = env.reset()
episode _reward =0
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while True:
action = agent.choose action(state)
next_state, reward, done, = env.step(action)
agent.update(state, action, reward, next state)
state = next state
episode reward += reward

if done:
break
rewards.append(episode_reward)
return rewards,agent

def record video(agent, env, out directory, fps=1):
images = []
done = False
state = env.reset(seed=40)
img = env.render(mode='rgb_array')
images.append(img)
while not done:

# Take the action (index) that have the maximum expected future reward given that state

action = agent.choose action(state)

state, reward, done, info = env.step(action) # We directly put next _state = state for
recording logic

img = env.render(mode='rgb_array')

if reward == -100:

images = []
images.append(img)
wait_time per frame = 1000//fps
imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)],

duration=wait_time per frame)

env = gym.make('CliffWalking-v0')

agent = TDAgent(env.observation_space.n, env.action_space.n)
episodes = 500

rewards,trainned _agent = train(agent, env, episodes, render=True)

video_ path="/content/replay.gif"
video fps=10
record video(trainned agent, env, video path, video fps)

from IPython.display import Image
Image('./replay.gif’)
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OUTPUT

INITIAL STATE

GOAL STATE

RESULT:

Thus, the implementation of online tabular temporal difference algorithm for Cliff

Walking is executed successfully and output is verified.
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EX.NO: 10 RECYCLING ROBOT USING Q-LEARNING
DATE:

AIM
To implement Q-Learning algorithm for Recycling Robot.

PROBLEM SATEMENT

A mobile robot with a rechargeable battery collects empty soda cans in an office area.
In the transition graph, the state nodes represent the high and low energy levels. They are
connected with black edges to two action nodes (search, wait) and to three action nodes (search,
wait, recharge), respectively. On the edges of the graph, the transition probability and the
reward for that transition are displayed. The separated diagrams show the action-value
functions for the optimal policy, where the values are calculated based on the Bellman
optimality equations. The optimal choice is highlighted in both states; in the case of multiple
optimal policies in the given state, each of them is highlighted.

whaiting reward ] o (state high, action search) 0.3

searching reward 1 B {state low, action search} 0.7

rescuing reward -3 ¥ {discount rata) 0.9
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.';'
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wait saarch wwait search recharge
Q*(h, w) =55 Q%h, 8) = 6.1 Q"L wi=5 O%.sl=29 Q'LN=55

Q-LEARNING ALGORITHM

Q-Learning is a model-free reinforcement learning algorithm used to find the optimal action-
selection policy for an agent interacting with an environment. It is a type of temporal difference
learning, which means it updates estimates based on other learned estimates, rather than waiting
for the final outcome.

Roll No: 21272105020xx Page No: 55




In Q-learning, an agent learns how to act optimally by learning the action-value function (Q-
function), which provides a measure of the expected cumulative reward for each action taken
in a given state.

Initialize Q(s,a),Vs € 8, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + a[R +ymax, Q(S",a) — Q(S, A)]
S « S
until S is terminal

Algorithm:
1. START
2. Initialize the rewards, state space, and hyperparameters:
a. State space S: The set of possible states (e.g., battery levels for the robot).
b. Action space A: The set of possible actions (e.g., search, wait, recharge).
c. Initialize the Q-table Q(s,a) with random values or zeros for all state-action
pairs.
d. Set hyperparameters: Learning rate a, discount factor y, and exploration rate €.
3. Define the reward function, that takes the current state s and action a as inputs and
returns the reward r.
4. Define the state transition function, that takes the current state s and action a as
inputs and returns next s’ state.
5. Implement Q-Learning Algorithm for given environment.
6. After completing all the episodes, display the plots and optimal policy.
7. STOP

PROGRAM
import numpy as np
import random

class RecyclingEnvironment:
def init (self):
self.energy levels = ["high", "low"]
self.actions = ["search", "wait", "recharge"]
self.initial energy level = "high"
self.battery depletion prob = 0.1

def reset(self):
self.current_energy level = self.initial energy level
return self.current_energy level
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def step(self, action):
# Energy level transitions
if self.current_energy level == "high":
if action == "search":
self.current_energy level = "low"
if np.random.uniform(0, 1) < self.battery depletion_prob:
# Robot's battery is depleted while searching
self.current_energy level = "low"
reward =-10 # Penalty for battery depletion
else:
reward = random.randint(1, 10) # Random reward for searching
elif action == "recharge":
self.current_energy level = "high"
reward =0 # No reward for recharging

else:
reward =0 # No reward for waiting
else:
if action == "recharge":

self.current_energy level = "high"
reward =0 # No reward for recharging
else:
reward =0 # No action other than recharging is allowed when energy is low

return self.current_energy level, reward

class QLearningAgent:
def  init (self, states, actions, learning rate=0.1, discount factor=0.99,

exploration_prob=0.1):

self.learning_rate = learning_rate

self.discount_factor = discount_factor

self.exploration_prob = exploration_prob

self.states = states

self.actions = actions

self.q_table = np.zeros((len(states), len(actions)))

def choose_action(self, state):
if np.random.uniform(0, 1) < self.exploration_prob:
return np.random.choice(self.actions)
else:
state idx = self.states.index(state)
return self.actions[np.argmax(self.q_table[state idx, :])]

defupdate q_table(self, state, action, reward, next_state):
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state idx = self.states.index(state)
next state idx = self.states.index(next_state)
action_idx = self.actions.index(action)
self.q_table[state idx, action_idx] += self.learning_rate * \
(reward + self.discount factor * np.max(self.q table[next state idx, :]) -
self.q_table[state idx, action idx])

# Hyperparameters
learning_rate = 0.1
discount_factor = 0.99
exploration_prob = 0.1
num_episodes = 1000

# Initialize environment and agent

env = RecyclingEnvironment()

states = env.energy levels

actions = env.actions

agent = QLearningAgent(states, actions, learning_rate, discount factor, exploration_prob)

# Training loop

for episode in range(num_episodes):
state = env.reset()
total reward =0

while True:
action = agent.choose_action(state)
next_state, reward = env.step(action)
agent.update q table(state, action, reward, next_state)
total reward += reward
state = next state

if state == "low":
break

if episode % 100 == 0:
print(f"Episode {episode}, Total Reward: {total reward}")

# Evaluation
state = env.reset()
total reward = 0

while state == "high":
action = agent.choose action(state)
next_state, reward = env.step(action)
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total reward += reward
state = next_state

print(f"Evaluation - Total Reward: {total reward}")

OUTPUT

Episode 0, Total Reward: 2
Episode 100, Total Reward:
Episode 200, Total Reward:
Episode 300, Total Reward:
Episode 400, Total Reward:
Episode 500, Total Reward:
Episode 600, Total Reward:
Episode 700, Total Reward:
Episode 800, Total Reward:
Episode 900, Total Reward:
Evaluation - Total Reward: 2

hn oo U n b b —

RESULT

Thus, the Recycling Robot problem has been implemented and executed succesfully

using Q-Learning.
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