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EX.NO: 1 
DATE: 

ELUCIDATING POLICY ITERATION IN JACK’S CAR 
RENTAL PROBLEM 

 
AIM 
 To develop a Python program to elucidate value iteration and policy iteration in Jacks’ 
Car Rental problem. 
 
PROBLEM SATEMENT 

Jack manages two locations for a nationwide car rental company. Each day, some 
number of customers arrives at each location to rent cars. If Jack has a car available, he rents it 
out and is credited $10 by the national company. If he is out of cars at that location, then the 
business is lost. Cars become available for renting the day after they are returned. To help 
ensure that cars are available where they are needed, Jack can move them between the two 
locations overnight, at a cost of $2 per car moved. 
 
POLICY ITERATION ALGORITHM  
A policy is a mapping from states to actions, i.e., given a state, how many cars should Jack 
move overnight. Now, suppose Jack has some policy π, then given this π, the value of a state 
(say s) is the expected reward that Jack would get when he starts from s and follows π after 
that 
 

 
The policy iteration algorithm, as shown in the above image, consists of three 

components.  The first component is the initialization. Initialize the value and policy matrices 
to zero. Given a policy, define a value for each state, and since state is a pair of two numbers 
where each number takes a value between 0 and 20, hence represent value by a matrix of shape 
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(21 x 21). The policy takes a state and outputs an action; hence, it can also be represented by a 
matrix of the same shape. 

 
The second component is policy evaluation. By policy evaluation, we mean that 

following this policy, what should be the value of any state. As mentioned above, given a policy 
π, the value of a state (say s) is the expected reward that Jack would get when he starts from s 
and follows π after that. This Bellman equation forms the basis of the value update shown in 
the policy evaluation component. After many such updates, V(s) converges to a number which 
almost satisfies (with at most some θ error) the Bellman equation and hence represents the 
value of state s. 

 
The third component is policy improvement. Given a state (say s), assign π(s) to be 

equal to that action which maximizes the expected reward. The policy becomes stable when 
none of the action maximization step in any state causes a change in the policy. 

 
Algorithm: 

1. Initialize Policy by starting with a random policy (e.g., move 0 cars between 
locations). 

2. For each state, calculate expected rewards by following the current policy and update 
the value of each state based on expected future returns. 

3. For each state, take different actions and update the policy with the action that 
maximizes expected profits. 

4. Repeat policy evaluation and improvement until the policy remains unchanged. 
5. Return the final policy that maximizes profits for each state. 

 
PROGRAM 
 
import numpy as np 

import sys 

import matplotlib.pyplot as plt 

if "../" not in sys.path: 

  sys.path.append("../")  

def value_iteration_for_gamblers(p_h, theta=0.0001, discount_factor=1.0): 

    rewards = np.zeros(101) 

    rewards[100] = 1  

    V = np.zeros(101) 
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    def one_step_lookahead(s, V, rewards): 

        A = np.zeros(101) 

        stakes = range(1, min(s, 100-s)+1)  

        for a in stakes: 

            A[a] = p_h * (rewards[s+a] + V[s+a]*discount_factor) + (1-p_h) * (rewards[s-a] + V[s-
a]*discount_factor) 

        return A 

    while True: 

        delta = 0 

        for s in range(1, 100): 

            A = one_step_lookahead(s, V, rewards) 

            best_action_value = np.max(A) 

            delta = max(delta, np.abs(best_action_value - V[s])) 

            V[s] = best_action_value         

        if delta < theta: 

            break 

    policy = np.zeros(100) 

    for s in range(1, 100): 

        A = one_step_lookahead(s, V, rewards) 

        best_action = np.argmax(A) 

        policy[s] = best_action 

    return policy, V 

policy, v = value_iteration_for_gamblers(0.25) 

print("Optimized Policy:") 

print(policy) 

print("") 

print("Optimized Value Function:") 

print(v) 
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OUTPUT 

 

 
 
 
 
 
RESULT 

The Python program to elucidate value iteration and policy iteration in Jack’s Car 
Rental problem was developed and executed successfully. 
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EX.NO: 2 
DATE: 

ELUCIDATING VALUE ITERATION FOR THE 
GAMBLER’S PROBLEM 

 
 
AIM 
 To develop a Python program to elucidate value iteration in Gambler’s problem. 
 
PROBLEM SATEMENT 

A gambler has the opportunity to make bets on the outcomes of a sequence of coin flips. If the 
coin comes up heads, he wins as many dollars as he has staked on that flip; if it is tails, he loses 
his stake. The game ends when the gambler wins by reaching his goal of $100, or loses by 
running out of money. 
On each flip, the gambler must decide what portion of his capital to stake, in integer numbers 
of dollars. This problem can be formulated as an undiscounted, episodic, finite MDP. 
The state is the gambler’s capital, s ∈ {1, 2, . . . , 99}. The actions are stakes, a ∈ {0, 1, . . . , 
min(s, 100 − s)}. The reward is zero on all transitions except those on which the gambler 
reaches his goal, when it is +1. 
The state-value function then gives the probability of winning from each state. A policy is a 
mapping from levels of capital to stakes. The optimal policy maximizes the probability of 
reaching the goal. Let p_h denote the probability of the coin coming up heads. If p_h is known, 
then the entire problem is known and it can be solved, for instance, by value iteration. 
 
 
VALUE ITERATIONALGORITHM 
 Value Iteration is a method for finding the optimal value function V* by solving the 
Bellman equations iteratively. It uses the concept of dynamic programming to maintain a value 
function V that approximates the optimal value function V*, iteratively improving V until it 
converges to V* (or close to it). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Value Iteration 
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ALGORITHM 
1. Initialize by assigning a value of 0 to all states except the goal state, which has a value 

of 1. 
2. For each possible amount of money the gambler has (state), calculate the expected 

reward for each action (bet amount). 
3. For each state, update its value by selecting the action (bet amount) that maximizes 

the expected reward, considering the probabilities of winning or losing the bet. 
4. Repeat the process for all states until the values converge (i.e., no significant changes 

in value between iterations). 
5. Once the values stabilize, derive the optimal betting strategy by choosing the action 

that leads to the highest value for each state. 
 
PROGRAM 
import numpy as np 

class JackCarRentalPolicyIteration:     

    def __init__(self, max_cars, transition_probs, rewards, discount_factor=0.9): 

        self.max_cars = max_cars 

        self.transition_probs = transition_probs 

        self.rewards = rewards 

        self.discount_factor = discount_factor 

        self.num_actions = 2 * max_cars + 1 

        self.policy = np.zeros((max_cars + 1, max_cars + 1), dtype=int) 

        self.value_function = np.zeros((max_cars + 1, max_cars + 1)) 

 

    def policy_evaluation(self): 

        delta = np.inf 

        while delta > 1e-6: 

            delta = 0 

            new_value_function = np.zeros_like(self.value_function)             

            for s1 in range(self.max_cars + 1): 

                for s2 in range(self.max_cars + 1): 

                    action = self.policy[s1, s2] 

                    move_cars = action - self.max_cars 

                    new_s1 = np.clip(s1 - move_cars, 0, self.max_cars) 
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                    new_s2 = np.clip(s2 + move_cars, 0, self.max_cars)                     

                    transition_prob = self.transition_probs[action][s1, s2] 

                    reward = self.rewards[s1, s2]                   

                    new_value_function[s1, s2] = np.sum(transition_prob * (reward + 
self.discount_factor * self.value_function)) 

                    delta = max(delta, np.abs(new_value_function[s1, s2] - self.value_function[s1, 
s2]))  

            self.value_function = new_value_function 

 

    def policy_improvement(self): 

        policy_stable = True 

        new_policy = np.zeros_like(self.policy) 

        for s1 in range(self.max_cars + 1): 

            for s2 in range(self.max_cars + 1): 

                action_values = np.zeros(self.num_actions)                 

                for action in range(self.num_actions): 

                    move_cars = action - self.max_cars 

                    new_s1 = np.clip(s1 - move_cars, 0, self.max_cars) 

                    new_s2 = np.clip(s2 + move_cars, 0, self.max_cars)                   

                    transition_prob = self.transition_probs[action][s1, s2] 

                    reward = self.rewards[s1, s2] 

                    action_values[action] = np.sum(transition_prob * (reward + self.discount_factor 
* self.value_function))              

                best_action = np.argmax(action_values) 

                new_policy[s1, s2] = best_action 

                if self.policy[s1, s2] != best_action: 

                    policy_stable = False         

        self.policy = new_policy 

        return policy_stable 

 

    def run(self): 
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        while True: 

            self.policy_evaluation() 

            if self.policy_improvement(): 

                break 

        return self.policy, self.value_function 

if __name__ == "__main__":     

    max_cars = 20 

    transition_probs = np.zeros((2 * max_cars + 1, max_cars + 1, max_cars + 1, max_cars + 1, 
max_cars + 1)) 

    for action in range(2 * max_cars + 1): 

        move_cars = action - max_cars 

        for s1 in range(max_cars + 1): 

            for s2 in range(max_cars + 1): 

                probs = np.random.uniform(0.1, 0.2, (max_cars + 1, max_cars + 1)) 

                probs /= probs.sum() 

                transition_probs[action][s1, s2] = probs                 

    rewards = np.minimum(np.arange(max_cars + 1)[:, None], 2) + 
np.minimum(np.arange(max_cars + 1), 2) 

    pi = JackCarRentalPolicyIteration(max_cars, transition_probs, rewards) 

    optimal_policy, optimal_value_function = pi.run() 

    print("Optimal Policy:") 

    print(optimal_policy) 

    print("Optimal Value Function:") 

    print(optimal_value_function) 
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OUTPUT 

 

 
 
RESULT 

The Python program to elucidate value iteration in Gambler’s problem was developed 
and executed successfully. 
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EX.NO: 3 
DATE: 

RANDOM WALK USING MARKOV PROCESS 

 
AIM 
 To generate random walk using Markov process. 
 
RANDOM WALK 

A random walk is a process for traversing a graph where at every step an outgoing edge 
chosen uniformly at random is followed. A Markov chain is similar except the outgoing edge 
is chosen according to an arbitrary fixed distribution. 
 
MARKOV PROCESS 

Markov process is a stochastic model that undergoes transitions from one state to 
another in a probabilistic manner. This process has the Markov property, which states that the 
future state depends only on the current state and not on the sequence of events that preceded 
it.  

PROBLEM STATEMENT 

States are represented by 'A', 'B', 'C', and 'D', and the transition probabilities between 
these states are defined in the transition_probabilities dictionary. For each state, the dictionary 
specifies the probability of transitioning to other states. The generate_random_walks function 
takes a starting state and the number of steps as input. It simulates a random walk by choosing 
the next state based on the transition probabilities defined in the transition_probabilities 
dictionary. The random.choices function is used to select the next state based on the provided 
weights (transition probabilities). The program then generates multiple random walks, each 
starting from state 'A', and prints the sequence of states traversed in each walk. 

Algorithm: 
 

1. Identify all possible states of the system (e.g., positions on a line or graph). 
2. Set up a transition matrix that defines the probabilities of moving from one state to 

another, where each state’s movement follows a Markov process (i.e., the next state 
depends only on the current state). 

3. Choose an initial state to begin the random walk. 
4. At each step, use the transition matrix to randomly move to the next state based on the 

current state's transition probabilities. 
5. Continue the random walk by repeating the process for a given number of steps or 

until reaching a predefined stopping condition (e.g., hitting a boundary or returning to 
the start). 

6. After completing the walk, analyze the results to understand the behavior of the 
random walk, such as expected time to return to the start or the distribution of states 
visited. 
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PROGRAM 
import random 

import numpy as np 

import matplotlib.pyplot as plt 

numpy.random.seed() 

prob = [0.4,0.6]  

start = 0 

positions = [start] 

rr = np.random.random(10) 

downp = rr > prob[0] 

upp = rr < prob[1] 

t=[i for i in range(0,11)] 

for idownp, iupp in zip(downp, upp): 

  down = idownp  

  up = iupp  

  positions.append(positions[-1] - down + up) 

plt.plot(t,positions,marker='o') 

plt.show() 

print(upp) 

print(downp) 
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OUTPUT 
 

 
 

 
 
 
 
 
 
RESULT 
 The Python program to generate random walk using Markov process was developed 
and executed successfully. 
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EX.NO: 4a 
DATE: 

FRAMING TIC-TAC-TOE IN A RL WORLD USING POLICY 
ITERATION 

     
AIM 
 To develop a simple reinforcement learning algorithm for agents to learn the game tic-
tac-toe using value function using policy iteration. 
 
PROBLEM STATEMENT:  TIC-TAC-TOE GAME 
 Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two 
players who take turns marking the spaces in a three-by-three grid with X or O. The player who 
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner. 
It is a solved game, with a forced draw assuming best play from both players.  Tic-tac-toe is 
played on a three-by-three grid by two players, who alternately place the marks X and O in one 
of the nine spaces in the grid. In the following example, the first player (X) wins the game in 
seven steps: 
  

 
 
POLICY ITERATIONALGORITHM 

 A policy is a mapping from states to actions, i.e., given a state, how many cars should 
Jack move overnight? Now, suppose Jack has some policy π, then given this π, the value of a 
state (say s) is the expected reward that Jack would get when he starts from s and follows π 
after that. 
 

 
 

Policy Iteration 
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TIC TAC TOE PROBLEM FORMULATION 
To formulate this reinforcement learning problem, the most important thing is to be 

clear about the 3 major components — state, action, and reward. The state of this game is the 
board state of both the agent and its opponent, so initialize a 3x3 board with zeros indicating 
available positions and update positions with 1 if player 1 takes a move and -1 if player 2 takes 
a move. The action is what positions a player can choose based on the current board state. 
Reward is between 0 and 1 and is only given at the end of the game. 
 

Player Setting 
Create a player class to represents agent, and the player is able to: 

 Choose actions based on current estimation of the states 

 Record all the states of the game 

 Update states-value estimation after each game 

 Save and load the policy 
 
State-Value update 

To update value estimation of states, apply policy iteration which is updated based on 
the formula below 

 

Training 
Now agent is able to learn by updating value estimation and our board is all set up, it 

is time to let two players play against each other. During training, the process for each player 
is: 
 Look for available positions 
 Choose action 
 Update board state and add the action to player’s states 
 Judge if reach the end of the game and give reward accordingly 

 
Algorithm: 

1. Represent all possible Tic-Tac-Toe board configurations as states. 
2. Start with an initial policy (e.g., choose random moves) for each board configuration. 
3. For each state, calculate the expected rewards by following the current policy. This 

includes winning, losing, or drawing the game after a series of moves. 
4. Update the value of each state based on future rewards. 
5. For each state, try different actions (placing 'X' or 'O' in an empty spot). 
6. Update the policy with the action that maximizes the expected reward. 
7. Repeat the policy evaluation and improvement steps until the policy becomes stable. 
8. Once the policy has converged, the final policy is the optimal strategy that maximizes 

the chances of winning the game for each board configuration. 
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PROGRAM 
#Policy iteration 

import random 

def check_winner(board): 

    win_conditions = [(0,1,2), (3,4,5), (6,7,8), (0,3,6), (1,4,7), (2,5,8), (0,4,8), (2,4,6)] 

    for cond in win_conditions: 

        if board[cond[0]] == board[cond[1]] == board[cond[2]] != 0: 

            return board[cond[0]] 

    return 0 if 0 not in board else None 

 

def available_moves(board): 

    return [i for i, x in enumerate(board) if x == 0] 

 

class TicTacToePolicyIteration: 

    def __init__(self, discount=0.9, epsilon=1e-6): 

        self.discount = discount 

        self.epsilon = epsilon 

        self.values = {tuple(self.int_to_board(b)): 0 for b in range(3**9)} 

        self.policy = {tuple(self.int_to_board(b)): 
random.choice(available_moves(self.int_to_board(b))) 

                       for b in range(3**9) if available_moves(self.int_to_board(b))} 

 

    def int_to_board(self, num): 

        return [(num // (3**i)) % 3 for i in range(9)] 

 

    def evaluate_policy(self): 

        while True: 

            delta = 0 

            for board in self.values: 
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                winner = check_winner(list(board)) 

                if winner is not None: 

                    self.values[board] = 1 if winner == 1 else -1 if winner == 2 else 0 

                    continue 

                move = self.policy[board] 

                new_board = list(board) 

                new_board[move] = 1  # Simulate player's move 

                reward = 1 if check_winner(new_board) == 1 else -1 if check_winner(new_board) 
== 2 else 0 

                new_value = reward + self.discount * self.values[tuple(new_board)] 

                delta = max(delta, abs(self.values[board] - new_value)) 

                self.values[board] = new_value 

            if delta < self.epsilon: 

                break 

 

    def improve_policy(self): 

        policy_stable = True 

        for board in self.policy: 

            old_action = self.policy[board] 

            best_action = None 

            best_value = -float('inf') 

            for move in available_moves(board): 

                new_board = list(board) 

                new_board[move] = 1  # Simulate player's move 

                move_value = self.values[tuple(new_board)] 

                if move_value > best_value: 

                    best_value = move_value 

                    best_action = move 

            self.policy[board] = best_action 

            if old_action != best_action: 
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                policy_stable = False 

        return policy_stable 

 

    def policy_iteration(self): 

        while True: 

            self.evaluate_policy() 

            if self.improve_policy(): 

                break 

 

    def get_best_move(self, board): 

        return self.policy[tuple(board)] 

 

    def play(self): 

        board = [0] * 9 

        while True: 

            print_board(board) 

            if (winner := check_winner(board)) is not None: 

                print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else 
"Opponent wins!") 

                break 

            board[self.get_best_move(board)] = 1 

            if (winner := check_winner(board)) is not None: 

                print_board(board) 

                print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else 
"Opponent wins!") 

                break 

            board[random.choice(available_moves(board))] = 2 

 

def print_board(board): 

    symbols = {0: '-', 1: 'X', 2: 'O'} 
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    for i in range(0, 9, 3): 

        print(f"{symbols[board[i]]} {symbols[board[i+1]]} {symbols[board[i+2]]}") 

    print() 

game = TicTacToePolicyIteration() 

game.policy_iteration() 

game.play() 

 
OUTPUT 
 

 

 
 
RESULT 
 The Python program to develop a simple reinforcement learning algorithm for agents 
to learn the game tic-tac-toe using value function using policy iteration was developed and 
executed successfully. 
 



Roll No: 21272105020xx Page No: 19 
 

EX.NO: 4b 
DATE: 

FRAMING TIC-TAC-TOE IN A RL WORLD USING VALUE 
ITERATION 

 
 
AIM 
 To develop a simple reinforcement learning algorithm for agents to learn the game tic-
tac-toe using value function. 
 
PROBLEM STATEMENT:  TIC-TAC-TOE GAME 
 Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two 
players who take turns marking the spaces in a three-by-three grid with X or O. The player who 
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner. 
It is a solved game, with a forced draw assuming best play from both players.  Tic-tac-toe is 
played on a three-by-three grid by two players, who alternately place the marks X and O in one 
of the nine spaces in the grid. In the following example, the first player (X) wins the game in 
seven steps: 
  

 
 
VALUE ITERATIONALGORITHM 
 Value Iteration is a method for finding the optimal value function V* by solving the 
Bellman equations iteratively. It uses the concept of dynamic programming to maintain a value 
function V that approximates the optimal value function V*, iteratively improving V until it 
converges to V* (or close to it). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Value Iteration 
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TIC TAC TOE PROBLEM FORMULATION 

To formulate this reinforcement learning problem, the most important thing is to be 
clear about the 3 major components — state, action, and reward. The state of this game is the 
board state of both the agent and its opponent, so initialize a 3x3 board with zeros indicating 
available positions and update positions with 1 if player 1 takes a move and -1 if player 2 takes 
a move. The action is what positions a player can choose based on the current board state. 
Reward is between 0 and 1 and is only given at the end of the game. 

Player Setting 
Create a player class to represents agent, and the player is able to: 

 Choose actions based on current estimation of the states 

 Record all the states of the game 
 Update states-value estimation after each game 

 Save and load the policy 
 
State-Value update 

To update value estimation of states, apply value iteration which is updated based on 
the formula below 

 
Training 

Now agent is able to learn by updating value estimation and our board is all set up, it 
is time to let two players play against each other. During training, the process for each player 
is: 
 Look for available positions 
 Choose action 
 Update board state and add the action to player’s states 
 Judge if reach the end of the game and give reward accordingly 

 
Algorithm: 
 

1. Represent all possible Tic-Tac-Toe board configurations as states. 
2. Assign an initial value to each state, typically starting with 0 for all states except 

terminal states (win, loss, draw). 
3. For each possible board configuration, calculate the expected reward for each possible 

action (placing 'X' or 'O' in an empty space). 
4. For each state, update its value by selecting the action that maximizes the expected 

reward, considering the outcomes of winning, losing, or drawing after the move. 
5. Repeat the process for all states until the values converge. 
6. Once the values stabilize, derive the optimal policy by selecting the action that leads 

to the highest value for each state (i.e., the best move for any board configuration). 
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PROGRAM 
 
#Value iteration 

import random 

def check_winner(board): 

    win_conditions = [(0,1,2), (3,4,5), (6,7,8), (0,3,6), (1,4,7), (2,5,8), (0,4,8), (2,4,6)] 

    for cond in win_conditions: 

        if board[cond[0]] == board[cond[1]] == board[cond[2]] != 0: 

            return board[cond[0]] 

    return 0 if 0 not in board else None 

def available_moves(board): 

    return [i for i, x in enumerate(board) if x == 0] 

class TicTacToeValueIteration: 

    def __init__(self, discount=0.9, epsilon=1e-6): 

        self.discount = discount 

        self.epsilon = epsilon 

        self.values = {tuple(self.int_to_board(b)): 0 for b in range(3**9)} 

 

    def int_to_board(self, num): 

        return [(num // (3**i)) % 3 for i in range(9)] 

 

    def value_iteration(self): 

        while True: 

            delta = 0 

            new_values = self.values.copy() 

            for board in self.values: 

                winner = check_winner(list(board)) 
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                if winner is not None: 

                    new_values[board] = 1 if winner == 1 else -1 if winner == 2 else 0 

                    continue 

                best_value = -float('inf') 

                for move in available_moves(board): 

                    new_board = list(board) 

                    new_board[move] = 1  # Simulate player's move 

                    reward = 1 if check_winner(new_board) == 1 else -1 if check_winner(new_board) 
== 2 else 0 

                    move_value = reward + self.discount * self.values[tuple(new_board)] 

                    best_value = max(best_value, move_value) 

                delta = max(delta, abs(self.values[board] - best_value)) 

                new_values[board] = best_value 

            self.values = new_values 

            if delta < self.epsilon: 

                break 

 

    def get_best_move(self, board): 

        best_move = None 

        best_value = -float('inf') 

        for move in available_moves(board): 

            new_board = list(board) 

            new_board[move] = 1  # Simulate player's move 

            move_value = self.values[tuple(new_board)] 

            if move_value > best_value: 

                best_value = move_value 

                best_move = move 
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        return best_move 

    def play(self): 

        board = [0] * 9 

        while True: 

            print_board(board) 

            if (winner := check_winner(board)) is not None: 

                print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else 
"Opponent wins!") 

                break 

            board[self.get_best_move(board)] = 1 

            if (winner := check_winner(board)) is not None: 

                print_board(board) 

                print("Result:", "Draw" if winner == 0 else "Agent wins!" if winner == 1 else 
"Opponent wins!") 

                break 

            board[random.choice(available_moves(board))] = 2 

 

def print_board(board): 

    symbols = {0: '-', 1: 'X', 2: 'O'} 

    for i in range(0, 9, 3): 

        print(f"{symbols[board[i]]} {symbols[board[i+1]]} {symbols[board[i+2]]}") 

    print() 

 

# Run the game 

game = TicTacToeValueIteration() 

game.value_iteration() 

game.play() 
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OUTPUT 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
RESULT 
 The Python program to develop a simple reinforcement learning algorithm for agents 
to learn the game tic-tac-toe using value function using value iteration was developed and 
executed successfully. 
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EX.NO: 5 
DATE: 

BLACKJACK WITH FIRST VISIT MONTE CARLO 

 
AIM 
 To implement First-Visit Monte Carlo Policy evaluation for Blackjack game. 
 

BLACKJACK - PROBLEM STATEMENT 

The game begins with two cards dealt to both dealer and player. One of the dealer’s 
cards is face up and the other is face down. If the player has 21 immediately (an ace and a 10-
card), it is called a natural. He then wins unless the dealer also has a natural, in which case the 
game is a draw. If the player does not have a natural, then he can request additional cards, one 
by one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes bust, he loses; 
if he sticks, then it becomes the dealer’s turn. The dealer hits or sticks according to a fixed 
strategy without choice: he sticks on any sum of 17 or greater, and hits otherwise. If the dealer 
goes bust, then the player wins; otherwise, the outcome — win, lose, or draw — is determined 
by whose final sum is closer to 21. If the player holds an ace that he could count as 11 without 
going bust, then the ace is said to be usable. 
 
The Pack 

The standard 52-card pack is used, but in most casinos several decks of cards are 
shuffled together. The six-deck game (312 cards) is the most popular. In addition, the dealer 
uses a blank plastic card, which is never dealt, but is placed toward the bottom of the pack to 
indicate when it will be time for the cards to be reshuffled. When four or more decks are used, 
they are dealt from a shoe (a box that allows the dealer to remove cards one at a time, face 
down, without actually holding one or more packs). 
 

Object of the Game 
Each participant attempts to beat the dealer by getting a count as close to 21 as 

possible, without going over 21. 
 

Card Values/scoring 
It is up to each individual player if an ace is worth 1 or 11. Face cards are 10 and any 

other card is its pip value. 
 
Betting 

Before the deal begins, each player places a bet, in chips, in front of them in the 
designated area. Minimum and maximum limits are established on the betting, and the general 
limits are from $2 to $500. 
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The Play 

The player to the left goes first and must decide whether to "stand" (not ask for another 
card) or "hit" (ask for another card in an attempt to get closer to a count of 21, or even hit 21 
exactly). Thus, a player may stand on the two cards originally dealt to them, or they may ask 
the dealer for additional cards, one at a time, until deciding to stand on the total (if it is 21 or 
under), or goes "bust" (if it is over 21). In the latter case, the player loses and the dealer collects 
the bet wagered. The dealer then turns to the next player to their left and serves them in the 
same manner. 

The combination of an ace with a card other than a ten-card is known as a "soft hand," 
because the player can count the ace as a 1 or 11, and either draw cards or not. For example 
with a "soft 17" (an ace and a 6), the total is 7 or 17. While a count of 17 is a good hand, the 
player may wish to draw for a higher total. If the draw creates a bust hand by counting the ace 
as an 11, the player simply counts the ace as a 1 and continues playing by standing or "hitting" 
(asking the dealer for additional cards, one at a time). 

The Dealer's Play 
When the dealer has served every player, the dealer’s face-down card is turned up. If 

the total is 17 or more, it must stand. If the total is 16 or under, they must take a card. The 
dealer must continue to take cards until the total is 17 or more, at which point the dealer must 
stand. If the dealer has an ace, and counting it as 11 would bring the total to 17 or more (but 
not over 21), the dealer must count the ace as 11 and stand. The dealer's decisions, then, are 
automatic on all plays, whereas the player always has the option of taking one or more cards. 
 
Signaling Intentions 

When a player's turn comes, they can say "Hit" or can signal for a card by scratching 
the table with a finger or two in a motion toward themselves, or they can wave their hand in 
the same motion that would say to someone "Come here!" When the player decides to stand, 
they can say "Stand" or "No more," or can signal this intention by moving their hand sideways, 
palm down and just above the table. 
 

Splitting Pairs 
If a player's first two cards are of the same denomination, such as two jacks or two 

sixes, they may choose to treat them as two separate hands when their turn comes around. The 
amount of the original bet then goes on one of the cards, and an equal amount must be placed 
as a bet on the other card. The player first plays the hand to their left by standing or hitting one 
or more times; only then is the hand to the right played. The two hands are thus treated 
separately, and the dealer settles with each on its own merits. With a pair of aces, the player is 
given one card for each ace and may not draw again. Also, if a ten-card is dealt to one of these 
aces, the payoff is equal to the bet (not one and one-half to one, as with a blackjack at any other 
time). 
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Doubling Down 

Another option open to the player is doubling their bet when the original two cards dealt 
total 9, 10, or 11. When the player's turn comes, they place a bet equal to the original bet, and 
the dealer gives the player just one card, which is placed face down and is not turned up until 
the bets are settled at the end of the hand. With two fives, the player may split a pair, double 
down, or just play the hand in the regular way. Note that the dealer does not have the option of 
splitting or doubling down. 
 

FIRST-VISIT MONTE CARLO POLICY EVALUATION 

 
 
ALGORITHM 
 

1. Simulate the Blackjack environment 
2. Define the policy function which takes the current state and check if the score is 

greater than or equal to 20, if yes we return 0 else we return 1. i.e If the score is 

greater than or equal to 20 we stand (0) else we hit (1) 
3. Define a function called generate_episode for generating epsiodes 

4. Perform First Visit MC Prediction 

5. Define the function plot_blackjack for plotting the value function and we can see how 

our value function is attaining the convergence. 
 
PROGRAM 
 
import numpy as np 

import random 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from collections import defaultdict 
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card_values = {'2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '10': 10, 'J': 10, 'Q': 10, 'K': 10, 
'A': 11} 

def deal_card(): 

    return random.choice(list(card_values.keys())) 

 

def get_hand_value(hand): 

    value = sum(card_values[card] for card in hand) 

    num_aces = hand.count('A') 

    while value > 21 and num_aces: 

        value -= 10 

        num_aces -= 1 

    return value 

 

def blackjack_policy(hand): 

    return 'hit' if get_hand_value(hand) < 20 else 'stand' 

 

def play_blackjack(policy): 

    player_hand = [deal_card(), deal_card()] 

    dealer_hand = [deal_card(), deal_card()] 

    while policy(player_hand) == 'hit': 

        player_hand.append(deal_card()) 

        if get_hand_value(player_hand) > 21: 

            return -1  # Player busts    

    while get_hand_value(dealer_hand) < 17: 

        dealer_hand.append(deal_card()) 

        if get_hand_value(dealer_hand) > 21: 

            return 1  # Dealer busts    

    player_value = get_hand_value(player_hand) 

    dealer_value = get_hand_value(dealer_hand) 

    if player_value > dealer_value: 
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        return 1  # Player wins 

    elif player_value < dealer_value: 

        return -1  # Dealer wins 

    else: 

        return 0  # Tie 

 

def first_visit_monte_carlo(num_episodes): 

    state_action_returns = defaultdict(list) 

    state_action_counts = defaultdict(int) 

    Q = defaultdict(float) 

    for episode in range(num_episodes): 

        player_hand = [deal_card(), deal_card()] 

        episode_trace = [] 

        while True: 

            action = blackjack_policy(player_hand) 

            episode_trace.append((tuple(player_hand), action)) 

            if action == 'hit': 

                player_hand.append(deal_card()) 

                if get_hand_value(player_hand) > 21: 

                    episode_trace.append((tuple(player_hand), 'bust')) 

                    break 

            else: 

                break        

        reward = play_blackjack(blackjack_policy) 

        for state, action in episode_trace: 

            if action != 'bust': 

                state_action_returns[(state, action)].append(reward) 

                state_action_counts[(state, action)] += 1 
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        for state_action, returns in state_action_returns.items(): 

            Q[state_action] = np.mean(returns) 

    return Q, state_action_counts 

 

def plot_3d(Q): 

    fig = plt.figure() 

    ax = fig.add_subplot(111, projection='3d') 

    x = [] 

    y = [] 

    z = []    

    for (state, action), value in Q.items(): 

        if action == 'hit': 

            x.append(get_hand_value(state)) 

            y.append(1)  # hit 

        elif action == 'stand': 

            x.append(get_hand_value(state)) 

            y.append(0)  # stand        

        z.append(value)    

    ax.scatter(x, y, z, c='r', marker='o')    

    ax.set_xlabel('Hand Value') 

    ax.set_ylabel('Action') 

    ax.set_zlabel('Value Estimate') 

    ax.set_yticks([0, 1]) 

    ax.set_yticklabels(['Stand', 'Hit'])    

    plt.show() 

 

def plot_line(Q): 

    hand_values = sorted(set(get_hand_value(state) for state, action in Q.keys())) 

    actions = ['stand', 'hit'] 
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    values_hit = [Q.get((tuple([str(value)] * 2), 'hit'), 0) for value in hand_values] 

    values_stand = [Q.get((tuple([str(value)] * 2), 'stand'), 0) for value in hand_values] 

    

    plt.figure(figsize=(10, 6)) 

    plt.plot(hand_values, values_hit, label='Hit', color='blue', marker='o') 

    plt.plot(hand_values, values_stand, label='Stand', color='green', marker='o') 

    plt.xlabel('Hand Value') 

    plt.ylabel('Value Estimate') 

    plt.title('State-Action Value Function: Hit vs Stand') 

    plt.legend() 

    plt.grid(True) 

    plt.show() 

 

# Main execution 

num_episodes = 1000 

Q, state_action_counts = first_visit_monte_carlo(num_episodes) 

 

# Print some of the results 

print("State-Action Value Estimates:") 

for (state, action), value in sorted(Q.items()): 

    print(f"State: {state}, Action: {action}, Value: {value:.2f}") 

 

# Plot the 3D representation 

plot_3d(Q) 

 

# Plot the line representation 

plot_line(Q) 
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OUTPUT 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULT 
 The Python program to implement First-Visit Monte Carlo Policy evaluation for 
Blackjack game was developed and executed successfully. 
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EX.NO: 6 
DATE: 

EVALUATE WINDY GRID WORLD WITH KING’S MOVES 

 
AIM 
 To evaluate Windy GridWorld environment using SARSA method. 
 
SARSA ALGORITHM FOR A WINDY GRIDWORLD ENVIRONMENT 

A standard gridworld Figure 1, with start and goal states, but with one difference: there 
is a crosswind upward through the middle of the grid. The actions are the standard four up, 
down, right, and left but in the middle region the resultant next states are shifted upward by a 
wind, the strength of which varies from column to column. The strength of the wind is given 
below each column, in number of cells shifted, upward. For example, if you are one cell to the 
right of the goal, then the action left takes you to the cell just above the goal. Let us treat this 
as an undiscounted episodic task, with constant rewards of 1 until the goal state is reached. 
Figure 6.11 shows the result of applying-greedy Sarsa to this task, with = 01, =05, and the 
initial values Q(sa) = 0 for all sa. The increasing slope of the graph shows that the goal is 
reached more and more quickly over time. By 8000 time steps, the greedy policy (shown inset) 
was long since optimal; continued-greedy exploration kept the average episode length at about 
17 steps, two more than the minimum of 15. Note that Monte Carlo methods cannot easily be 
used on this task because termination is not guaranteed for all policies. If a policy was ever 
found that caused the agent to stay in the same state, then the next episode would never end. 
Step-by-step learning methods such as Sarsa do not have this problem because they quickly 
learn during the episode that such policies are poor, and switch to something else 

 

Figure 1: Windy Grid World 
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Figure 2 On-policy TD Control Algorithm- SARSA 

The SARSA algorithm works by carrying out actions based on rewards received from 
previous actions. To do this, SARSA stores a table of state (S)-action (A) estimate pairs for 
each Q-value. This table is known as a Q-table, while the state-action pairs are denoted as 
Q(S, A). The SARSA process starts by initializing Q(S, A) to arbitrary values Figure 2. In 
this step, the initial current state (S) is set, and the initial action (A) is selected by using an 
epsilon-greedy algorithm policy based on current Q-values. An epsilon-greedy policy 
balances the use of exploitation and exploration methods in the learning process to select the 
action with the highest estimated reward.  
 

ALGORITHM: 
1. START 
2. Initialize the rewards, state space, and hyperparameters: 

a. State space S: The set of possible states (e.g., battery levels for the robot). 
b. Action space A: The set of possible actions (e.g., search, wait, recharge). 
c. Initialize the Q-table Q(s,a) with random values or zeros for all state-action 

pairs. 
d. Set hyperparameters: Learning rate α, discount factor γ, and exploration rate ϵ. 

3. Define the reward function, that takes the current state s and action a as inputs and 
returns the reward r. 

4. Define the state transition function, that takes the current state s and action a as 
inputs and returns next s′ state. 

5. Implement SARSA Algorithm for given environment. 
6. After completing all the episodes, display the plots and optimal policy. 
7. STOP 

PROGRAM: 
import numpy as np 
import matplotlib 
matplotlib.use('Agg') 
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import matplotlib.pyplot as plt 
# World dimensions 
WORLD_HEIGHT = 7 
WORLD_WIDTH = 10 
# Wind strength for each column 
WIND = [0, 0, 0, 1, 1, 1, 2, 2, 1, 0] 
# Possible actions (including King's moves) 
ACTION_UP = 0 
ACTION_DOWN = 1 
ACTION_LEFT = 2 
ACTION_RIGHT = 3 
ACTION_UP_LEFT = 4 
ACTION_UP_RIGHT = 5 
ACTION_DOWN_LEFT = 6 
ACTION_DOWN_RIGHT = 7 
# Probability for exploration 
EPSILON = 0.1 
# Learning rate 
ALPHA = 0.5 
# Reward for each step 
REWARD = -1.0 
# Start and Goal positions 
START = [3, 0] 
GOAL = [3, 7] 
# All possible actions 
ACTIONS = [ACTION_UP, ACTION_DOWN, ACTION_LEFT, ACTION_RIGHT, 
ACTION_UP_LEFT, ACTION_UP_RIGHT, ACTION_DOWN_LEFT, 
ACTION_DOWN_RIGHT] 
 
def step(state, action): 
    i, j = state 
    if action == ACTION_UP: 
        return [max(i - 1 - WIND[j], 0), j] 
    elif action == ACTION_DOWN: 
        return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j] 
    elif action == ACTION_LEFT: 
        return [max(i - WIND[j], 0), max(j - 1, 0)] 
    elif action == ACTION_RIGHT: 
        return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)] 
    elif action == ACTION_UP_LEFT: 
        return [max(i - 1 - WIND[max(j - 1, 0)], 0), max(j - 1, 0)] 
    elif action == ACTION_UP_RIGHT: 
        return [max(i - 1 - WIND[min(j + 1, WORLD_WIDTH - 1)], 0), min(j + 1, 
WORLD_WIDTH - 1)] 
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    elif action == ACTION_DOWN_LEFT: 
        return [max(min(i + 1 - WIND[max(j - 1, 0)], WORLD_HEIGHT - 1), 0), max(j - 1, 0)] 
    elif action == ACTION_DOWN_RIGHT: 
        return [max(min(i + 1 - WIND[min(j + 1, WORLD_WIDTH - 1)], WORLD_HEIGHT - 
1), 0), min(j + 1, WORLD_WIDTH - 1)] 
    else: 
        assert False 
def episode(q_value): 
    time = 0 
    state = START 
    if np.random.binomial(1, EPSILON) == 1: 
        action = np.random.choice(ACTIONS) 
    else: 
        values_ = q_value[state[0], state[1], :] 
        action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ 
== np.max(values_)]) 
    while state != GOAL: 
        next_state = step(state, action) 
        if np.random.binomial(1, EPSILON) == 1: 
            next_action = np.random.choice(ACTIONS) 
        else: 
            values_ = q_value[next_state[0], next_state[1], :] 
            next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if 
value_ == np.max(values_)]) 
        # Q-learning update rule 
        q_value[state[0], state[1], action] += \ 
            ALPHA * (REWARD + np.max(q_value[next_state[0], next_state[1], :]) -  
                     q_value[state[0], state[1], action]) 
        state = next_state 
        action = next_action 
        time += 1 
    return time 
def figure_6_3(): 
    q_value = np.zeros((WORLD_HEIGHT, WORLD_WIDTH, len(ACTIONS))) 
    episode_limit = 500 
    steps = [] 
    ep = 0 
    while ep < episode_limit: 
        steps.append(episode(q_value)) 
        ep += 1 
    steps = np.add.accumulate(steps) 
    plt.plot(steps, np.arange(1, len(steps) + 1)) 
    plt.xlabel('Time steps') 
    plt.ylabel('Episodes') 
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    plt.savefig('figure_6_3.png') 
    plt.close() 
    optimal_policy = [] 
    for i in range(0, WORLD_HEIGHT): 
        optimal_policy.append([]) 
        for j in range(0, WORLD_WIDTH): 
            if [i, j] == GOAL: 
                optimal_policy[-1].append('G') 
                continue 
            bestAction = np.argmax(q_value[i, j, :]) 
            if bestAction == ACTION_UP: 
                optimal_policy[-1].append('U') 
            elif bestAction == ACTION_DOWN: 
                optimal_policy[-1].append('D') 
            elif bestAction == ACTION_LEFT: 
                optimal_policy[-1].append('L') 
            elif bestAction == ACTION_RIGHT: 
                optimal_policy[-1].append('R') 
            elif bestAction == ACTION_UP_LEFT: 
                optimal_policy[-1].append('UL') 
            elif bestAction == ACTION_UP_RIGHT: 
                optimal_policy[-1].append('UR') 
            elif bestAction == ACTION_DOWN_LEFT: 
                optimal_policy[-1].append('LL') 
            elif bestAction == ACTION_DOWN_RIGHT: 
                optimal_policy[-1].append('LR') 
     
    print('Optimal policy is:') 
    for row in optimal_policy: 
        print(row) 
    print('Wind strength for each column:\n{}'.format([str(w) for w in WIND]) 
if __name__ == '__main__': 
    figure_6_3() 
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OUTPUT 
 

 

 
 
 
 
 
 
 
 
RESULT 

Thus, the evaluation of Windy Grid World environment with King’s move using 
SARSA method has been implemented and executed successfully. 
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EX.NO: 7 
DATE: 

OFF-POLICY TD CONTROL ALGORITHM FOR CLIFF 
WALKING 

 
AIM 

To implement the Off-Policy TD algorithm known as Q-learning for Cliff Walking. 
 
 
PROBLEM STATEMENT - CLIFF WALKING 
 

The cliff walking problem is a grid problem with a 4 x 12 board. The agent starts in the 
bottom left corner and must reach the bottom right corner. The agent must step into the cliff 
that segregates those tiles. 

 
 
 

A) Define the Environment 
 

1. Create a gridworld representation of the environment with states, actions, and 
rewards. 

2. Define the state space, which includes the agent's position on the grid. 
3. Define the action space, which includes possible movements (up, down, left, right). 
4. Specify rewards and penalties for different states and actions. In cliff-walking, we 

typically have a large negative reward for falling off the cliff. 
 

B) Initialize Q-Table to values of 0s 
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PROGRAM: 

import numpy as np 

ROWS = 4 

COLS = 12 

S = (3, 0) 

G = (3, 11) 

class Cliff: 

    def __init__(self): 

        self.end = False 

        self.pos = S 

        self.board = np.zeros([4, 12]) 

        # add cliff marked as -1 

        self.board[3, 1:11] = -1 

 

    def nxtPosition(self, action): 

        if action == "up": 

            nxtPos = (self.pos[0] - 1, self.pos[1]) 

        elif action == "down": 

            nxtPos = (self.pos[0] + 1, self.pos[1]) 

        elif action == "left": 

            nxtPos = (self.pos[0], self.pos[1] - 1) 

        else: 

            nxtPos = (self.pos[0], self.pos[1] + 1) 

        # check legitimacy 

        if nxtPos[0] >= 0 and nxtPos[0] <= 3: 

            if nxtPos[1] >= 0 and nxtPos[1] <= 11: 

                self.pos = nxtPos 

        if self.pos == G: 

            self.end = True 

            print("Game ends reaching goal") 



Roll No: 21272105020xx Page No: 41 
 

        if self.board[self.pos] == -1: 

            self.end = True 

            print("Game ends falling off cliff") 

        return self.pos 

 

    def giveReward(self): 

        # give reward 

        if self.pos == G: 

            return -1 

        if self.board[self.pos] == 0: 

            return -1 

        return -100 

 

    def show(self): 

        for i in range(0, ROWS): 

            print('-------------------------------------------------') 

            out = '| ' 

            for j in range(0, COLS): 

                if self.board[i, j] == -1: 

                    token = '*' 

                if self.board[i, j] == 0: 

                    token = '0' 

                if (i, j) == self.pos: 

                    token = 'S' 

                if (i, j) == G: 

                    token = 'G' 

                out += token + ' | ' 

            print(out) 

        print('-------------------------------------------------') 
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class Agent: 

    def __init__(self, exp_rate=0.3, lr=0.1, sarsa=True): 

        self.cliff = Cliff() 

        self.actions = ["up", "left", "right", "down"] 

        self.states = []  # record position and action of each episode 

        self.pos = S 

        self.exp_rate = exp_rate 

        self.lr = lr 

        self.sarsa = sarsa 

        self.state_actions = {} 

        for i in range(ROWS): 

            for j in range(COLS): 

                self.state_actions[(i, j)] = {} 

                for a in self.actions: 

                    self.state_actions[(i, j)][a] = 0 

 

    def chooseAction(self): 

        # epsilon-greedy 

        mx_nxt_reward = -999 

        action = "" 

        if np.random.uniform(0, 1) <= self.exp_rate: 

            action = np.random.choice(self.actions) 

        else: 

            # greedy action 

            for a in self.actions: 

                current_position = self.pos 

                nxt_reward = self.state_actions[current_position][a] 

                if nxt_reward >= mx_nxt_reward: 

                    action = a 

                    mx_nxt_reward = nxt_reward 
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        return action 

 

    def reset(self): 

        self.states = [] 

        self.cliff = Cliff() 

        self.pos = S 

 

    def play(self, rounds=10): 

        for _ in range(rounds): 

            while 1: 

                curr_state = self.pos 

                cur_reward = self.cliff.giveReward() 

                action = self.chooseAction() 

                # next position 

                self.cliff.pos = self.cliff.nxtPosition(action) 

                self.pos = self.cliff.pos 

                self.states.append([curr_state, action, cur_reward]) 

                if self.cliff.end: 

                    break 

            # game end update estimates 

            reward = self.cliff.giveReward() 

            print("End game reward", reward) 

            # reward of all actions in end state is same 

            for a in self.actions: 

                self.state_actions[self.pos][a] = reward 

            if self.sarsa: 

                for s in reversed(self.states): 

                    pos, action, r = s[0], s[1], s[2] 

                    current_value = self.state_actions[pos][action] 

                    reward = current_value + self.lr * (r + reward - current_value) 



Roll No: 21272105020xx Page No: 44 
 

                    self.state_actions[pos][action] = round(reward, 3) 

            else: 

                for s in reversed(self.states): 

                    pos, action, r = s[0], s[1], s[2] 

                    current_value = self.state_actions[pos][action] 

                    reward = current_value + self.lr * (r + reward - current_value) 

                    self.state_actions[pos][action] = round(reward, 3) 

                    # update using the max value of S' 

                    reward = np.max(list(self.state_actions[pos].values()))  # max 

            self.reset() 

 

def showRoute(states): 

    board = np.zeros([4, 12]) 

    # add cliff marked as -1 

    board[3, 1:11] = -1 

    for i in range(0, ROWS): 

        print('-------------------------------------------------') 

        out = '| ' 

        for j in range(0, COLS): 

            token = '0' 

            if board[i, j] == -1: 

                token = '*' 

            if (i, j) in states: 

                token = 'R' 

            if (i, j) == G: 

                token = 'G' 

            out += token + ' | ' 

        print(out) 

    print('-------------------------------------------------')  
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if __name__ == "__main__": 

    print("sarsa training ... ") 

    ag = Agent(exp_rate=0.1, sarsa=True) 

    ag.play(rounds=500) 

    # Sarsa 

    ag_op = Agent(exp_rate=0) 

    ag_op.state_actions = ag.state_actions 

    states = [] 

    while 1: 

        curr_state = ag_op.pos 

        action = ag_op.chooseAction() 

        states.append(curr_state) 

        print("current position {} |action {}".format(curr_state, action)) 

        # next position 

        ag_op.cliff.pos = ag_op.cliff.nxtPosition(action) 

        ag_op.pos = ag_op.cliff.pos 

        if ag_op.cliff.end: 

            break 

    showRoute(states) 

    print("q-learning training ... ") 

    ag = Agent(exp_rate=0.1, sarsa=False) 

    ag.play(rounds=500) 

    # Q-learning 

    ag_op = Agent(exp_rate=0) 

    ag_op.state_actions = ag.state_actions 

    states = [] 

    while 1: 

        curr_state = ag_op.pos 

        action = ag_op.chooseAction() 

        states.append(curr_state) 
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        print(“current position {} |action {}”.format(curr_state, action)) 

        # next position 

        ag_op.cliff.pos = ag_op.cliff.nxtPosition(action) 

        ag_op.pos = ag_op.cliff.pos 

        if ag_op.cliff.end: 

            break 

    showRoute(states) 

 

OUTPUT 

current position (3, 0) |action up 
current position (2, 0) |action right 
current position (2, 1) |action right 
current position (2, 2) |action right 
current position (2, 3) |action right 
current position (2, 4) |action right 
current position (2, 5) |action right 
current position (2, 6) |action right 
current position (2, 7) |action right 
current position (2, 8) |action right 
current position (2, 9) |action right 
current position (2, 10) |action right 
current position (2, 11) |action down 
 
Game ends reaching goal 

 

 

 

RESULT 
Thus, the implementation of the Off-Policy TD algorithm known as Q-learning for Cliff 

Walking is executed successfully and output is verified. 
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EX.NO: 8 
DATE: 

ON-POLICY TD CONTROL ALGORITHM FOR FROZEN 
LAKE 

 
AIM 

To implement On-Policy TD algorithm known as SARSA for Frozen Lake 
environment. 
 
ON-POLICY TD CONTROL ALGORITHM: SARSA 

State-action-reward-state-action (SARSA) is an on-policy reinforcement learning 
algorithm used to teach a new Markov decision process policy. It’s an algorithm where, in the 
current state (S), an action (A) is taken and the agent gets a reward (R), and ends up in the next 
state (S1), and takes action (A1) in S1. Therefore, the tuple (S, A, R, S1, A1) stands for the 
acronym SARSA. It’s called an on-policy algorithm because it updates the policy based on 
actions taken. 

PROBLEM STATEMENT 

In frozen lake environment, the AI agent must cross the frozen lake from the start to the 
goal, without falling into the holes. 

 

 
Frozen Lake Environment 

The SARSA algorithm works by carrying out actions based on rewards received from 
previous actions. To do this, SARSA stores a table of state (S)-action (A) estimate pairs for 
each Q-value. This table is known as a Q-table, while the state-action pairs are denoted as Q(S, 
A). Exploitation involves using already known, estimated values to get more previously earned 
rewards in the learning process. Exploration involves attempting to find new knowledge on 
actions, which may result in short-term, sub-optimal actions during learning but may yield 
long-term benefits to find the best possible action and reward. From here, the selected action 
is taken, and the reward (R) and next state (S1) are observed. Q(S, A) is then updated, and the 
next action (A1) is selected based on the updated Q-values. Action-value estimates of a state 
are also updated for each current action-state pair present, which estimates the value of 
receiving a reward for taking a given action. 

 
The above steps of R through A1 are repeated until the algorithm’s given episode ends, 

which describes the sequence of states, actions and rewards taken until the final (terminal) state 
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is reached. State, action and reward experiences in the SARSA process are used to update Q(S, 
A) values for each iteration. 
 

ALGORITHM 
 
1. Initialize the environment and Q-table with zeros.   
2. Train using the SARSA algorithm, updating Q-values via the state-action reward 
dynamics.   
3. Evaluate the learned policy periodically to track average rewards.   
4. Visualize the agent's performance by rendering its actions in the environment.   
5. Analyze results to check if the target average reward was achieved and demonstrate 

success. 
 
 
PROGRAM 
 
import numpy as np 
import gym 
from tqdm import tqdm 
import time 
def epsilon_greedy_policy(Q, state, epsilon): 
    if np.random.uniform(0, 1) < epsilon: 
        return np.random.choice(len(Q[state])) 
    else: 
        return np.argmax(Q[state]) 
def sarsa(env, num_episodes, alpha=0.5, gamma=0.99, epsilon=0.5, eval_every=100): 
    Q = np.zeros([env.observation_space.n, env.action_space.n]) 
    pbar = tqdm(total=num_episodes, dynamic_ncols=True) 
    avg_rewards = []  # To track average rewards over episodes 
    for episode in range(num_episodes): 
        state, _ = env.reset() 
        action = epsilon_greedy_policy(Q, state, epsilon) 
        done = False 
        episode_reward = 0 
        while not done: 
            next_state, reward, done, _, _ = env.step(action) 
            next_action = epsilon_greedy_policy(Q, next_state, epsilon) 
            td_target = reward + gamma * Q[next_state, next_action] 
            td_error = td_target - Q[state, action] 
            Q[state, action] += alpha * td_error 
            state, action = next_state, next_action 
            episode_reward += reward 
        
        pbar.update(1) 
        
        # Track average rewards 
        if episode % eval_every == 0: 
            avg_reward = evaluate_policy(env, Q, eval_every) 
            avg_rewards.append(avg_reward) 
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            pbar.set_description(f"Average reward: {avg_reward:.2f}") 
 
    pbar.close() 
    return Q, avg_rewards  # Ensure both values are returned 
 
def evaluate_policy(env, Q, num_episodes): 
    total_reward = 0 
    policy = np.argmax(Q, axis=1) 
    for episode in range(num_episodes): 
        observation, _ = env.reset() 
        done = False 
        episode_reward = 0 
        while not done: 
            action = policy[observation] 
            observation, reward, done, _, _ = env.step(action) 
            episode_reward += reward 
        total_reward += episode_reward 
    return total_reward / num_episodes 
def demo_agent(env, Q, num_episodes=1): 
    policy = np.argmax(Q, axis=1) 
    for episode in range(num_episodes): 
        observation, _ = env.reset() 
        done = False 
        print("\nEpisode:", episode + 1) 
        while not done: 
            env.render() 
            action = policy[observation] 
            observation, _,done, _, _ = env.step(action) 
    env.render() 
    env.close()   
def main(): 
    env = gym.make("FrozenLake-v1") 
    num_episodes = 10000 
 
    Q_sarsa, avg_rewards = sarsa(env, num_episodes) 
    
    # Find episodes required to reach optimal average reward 
    target_avg_reward = 0.8  # Define your target average reward 
    optimal_episode = next((i * 100 for i, reward in enumerate(avg_rewards) if reward >= 
target_avg_reward), None) 
 
    if optimal_episode is not None: 
        print(f"Optimal average reward achieved after {optimal_episode} episodes.") 
    else: 
        print("Optimal average reward not achieved within the training episodes.") 
    
    avg_reward = evaluate_policy(env, Q_sarsa, num_episodes) 
    print(f"Average reward after SARSA: {avg_reward}") 
 
    visual_env = gym.make('FrozenLake-v1', render_mode='human') 
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    demo_agent(visual_env, Q_sarsa, num_episodes) 
 
 
if __name__ == '__main__': 
    main() 
 
OUTPUT: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULT: 
 
 Hence On - policy TD algorithm for Frozen Lake was successfully implemented. 
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EX.NO: 9 
DATE: 

ONLINE TABULAR TD ALGORITHM FOR CLIFFWALKING 

 
AIM 

To implement online tabular temporal difference algorithm for Cliff Walking. 
 
TRUE ONLINE TEMPORAL DIFFERENCE ALGORITHM  
 

1. Initialize Q-Values: 
Initialize the Q-values (action-values) for all state-action pairs arbitrarily, e.g., 

to zeros. 
2. Set Hyperparameters: 

Define the learning rate (alpha), discount factor (gamma), and lambda (λ) for 
eligibility traces. 

3. Initialize Eligibility Traces: 
Initialize eligibility traces for each state-action pair to zero. 

       4.  Repeat for each episode: 
a. Initialize the starting state (S). 
b. Initialize eligibility traces to zero for the new episode. 
c. Repeat for each time step within the episode: 

i.  Choose an action (A) based on a policy (e.g., epsilon-greedy). 
ii.  Take the action and observe the reward (R) and the new state (S'). 
iii.  Calculate the TD error (delta): 

- delta = R + gamma * Q(S', A) - Q(S, A) 
iv. Update the eligibility traces for the current state-action pair: 

- E(S, A) = gamma * lambda * E(S, A) + 1 
v. Update the Q-value for the current state-action pair using the True Online 

TD update   
            rule: 

- Q(S, A) = Q(S, A) + alpha * delta * E(S, A) 
vi. Update the eligibility traces for all state-action pairs: 

- E(S, A) = gamma * lambda * E(S, A) 
vii. Set the current state to the new state (S = S'). 

d. Repeat until the episode ends. 
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ALGORITHM: 

1. Initialize Q-table, learning rate, discount factor, and exploration parameters. 
2. For each episode, reset the environment and initialize total reward. 
3. Select actions using ϵ\epsilonϵ-greedy policy, perform the action, and observe the next 

state, reward, and done flag. 
4. Update the Q-value for the current state and action based on the reward and the 

maximum Q-value of the next state. 
5. Accumulate the reward, move to the next state, and repeat until the episode ends. 
6. Record the total reward, decay the exploration rate, and continue to the next episode. 
7. After training, visualize the total rewards and Q-value heatmap. 

 

PROGRAM 
import numpy as np 
import gym 
import pygame 
import imageio 
import random 
 
class TDAgent: 
    def __init__(self, n_states, n_actions, alpha=0.1, gamma=0.99, epsilon=0.1): 
        self.n_states = n_states 
        self.n_actions = n_actions 
        self.alpha = alpha 
        self.gamma = gamma 
        self.epsilon = epsilon 
        self.Q = np.zeros((n_states, n_actions)) 
 
    def choose_action(self, state): 
        if np.random.uniform(0, 1) < self.epsilon: 
            return np.random.choice(self.n_actions) 
        else: 
            return np.argmax(self.Q[state, :]) 
 
    def update(self, state, action, reward, next_state): 
        predict = self.Q[state, action] 
        target = reward + self.gamma * np.max(self.Q[next_state, :]) 
        self.Q[state, action] += self.alpha * (target - predict) 
 
def train(agent, env, episodes, render=False): 
    rewards = [] 
    for episode in range(episodes): 
        state = env.reset() 
        episode_reward = 0 
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        while True: 
            action = agent.choose_action(state) 
            next_state, reward, done, _ = env.step(action) 
            agent.update(state, action, reward, next_state) 
            state = next_state 
            episode_reward += reward 
 
            if done: 
                break 
        rewards.append(episode_reward) 
    return rewards,agent 
 
def record_video(agent, env, out_directory, fps=1): 
  images = [] 
  done = False 
  state = env.reset(seed=40) 
  img = env.render(mode='rgb_array') 
  images.append(img) 
  while not done: 
    # Take the action (index) that have the maximum expected future reward given that state 
    action = agent.choose_action(state) 
    state, reward, done, info = env.step(action) # We directly put next_state = state for 
recording logic 
    img = env.render(mode='rgb_array') 
    if reward == -100: 
      images = [] 
    images.append(img) 
    wait_time_per_frame = 1000//fps 
  imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)], 
duration=wait_time_per_frame) 
 
env = gym.make('CliffWalking-v0') 
agent = TDAgent(env.observation_space.n, env.action_space.n) 
episodes = 500 
rewards,trainned_agent = train(agent, env, episodes, render=True) 
 
video_path="/content/replay.gif" 
video_fps=10 
record_video(trainned_agent, env, video_path, video_fps) 
 
from IPython.display import Image 
Image('./replay.gif') 
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OUTPUT 

 

INITIAL STATE 

 

GOAL STATE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULT: 
 
 Thus, the implementation of online tabular temporal difference algorithm for Cliff 
Walking is executed successfully and output is verified. 
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EX.NO: 10 
DATE: 

RECYCLING ROBOT USING Q-LEARNING 

 
AIM 
 To implement Q-Learning algorithm for Recycling Robot. 
 
PROBLEM SATEMENT 

A mobile robot with a rechargeable battery collects empty soda cans in an office area. 
In the transition graph, the state nodes represent the high and low energy levels. They are 
connected with black edges to two action nodes (search, wait) and to three action nodes (search, 
wait, recharge), respectively. On the edges of the graph, the transition probability and the 
reward for that transition are displayed. The separated diagrams show the action-value 
functions for the optimal policy, where the values are calculated based on the Bellman 
optimality equations. The optimal choice is highlighted in both states; in the case of multiple 
optimal policies in the given state, each of them is highlighted. 

 

 
 
Q-LEARNING ALGORITHM  
 
Q-Learning is a model-free reinforcement learning algorithm used to find the optimal action-
selection policy for an agent interacting with an environment. It is a type of temporal difference 
learning, which means it updates estimates based on other learned estimates, rather than waiting 
for the final outcome. 
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In Q-learning, an agent learns how to act optimally by learning the action-value function (Q-
function), which provides a measure of the expected cumulative reward for each action taken 
in a given state. 
 

 
 

Algorithm: 
1. START 
2. Initialize the rewards, state space, and hyperparameters: 

a. State space S: The set of possible states (e.g., battery levels for the robot). 
b. Action space A: The set of possible actions (e.g., search, wait, recharge). 
c. Initialize the Q-table Q(s,a) with random values or zeros for all state-action 

pairs. 
d. Set hyperparameters: Learning rate α, discount factor γ, and exploration rate ϵ. 

3. Define the reward function, that takes the current state s and action a as inputs and 
returns the reward r. 

4. Define the state transition function, that takes the current state s and action a as 
inputs and returns next s′ state. 

5. Implement Q-Learning Algorithm for given environment. 
6. After completing all the episodes, display the plots and optimal policy. 
7. STOP 

PROGRAM 
import numpy as np 
import random 
 
class RecyclingEnvironment: 
    def __init__(self): 
        self.energy_levels = ["high", "low"] 
        self.actions = ["search", "wait", "recharge"] 
        self.initial_energy_level = "high" 
        self.battery_depletion_prob = 0.1 
 
    def reset(self): 
        self.current_energy_level = self.initial_energy_level 
        return self.current_energy_level 
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    def step(self, action): 
        # Energy level transitions 
        if self.current_energy_level == "high": 
            if action == "search": 
                self.current_energy_level = "low" 
                if np.random.uniform(0, 1) < self.battery_depletion_prob: 
                    # Robot's battery is depleted while searching 
                    self.current_energy_level = "low" 
                    reward = -10  # Penalty for battery depletion 
                else: 
                    reward = random.randint(1, 10)  # Random reward for searching 
            elif action == "recharge": 
                self.current_energy_level = "high" 
                reward = 0  # No reward for recharging 
            else: 
                reward = 0  # No reward for waiting 
        else: 
            if action == "recharge": 
                self.current_energy_level = "high" 
                reward = 0  # No reward for recharging 
            else: 
                reward = 0  # No action other than recharging is allowed when energy is low 
 
        return self.current_energy_level, reward 
 
class QLearningAgent: 
    def __init__(self, states, actions, learning_rate=0.1, discount_factor=0.99, 
exploration_prob=0.1): 
        self.learning_rate = learning_rate 
        self.discount_factor = discount_factor 
        self.exploration_prob = exploration_prob 
        self.states = states 
        self.actions = actions 
        self.q_table = np.zeros((len(states), len(actions))) 
 
    def choose_action(self, state): 
        if np.random.uniform(0, 1) < self.exploration_prob: 
            return np.random.choice(self.actions) 
        else: 
            state_idx = self.states.index(state) 
            return self.actions[np.argmax(self.q_table[state_idx, :])] 
 
    def update_q_table(self, state, action, reward, next_state): 
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        state_idx = self.states.index(state) 
        next_state_idx = self.states.index(next_state) 
        action_idx = self.actions.index(action) 
        self.q_table[state_idx, action_idx] += self.learning_rate * \ 
            (reward + self.discount_factor * np.max(self.q_table[next_state_idx, :]) - 
self.q_table[state_idx, action_idx]) 
 
# Hyperparameters 
learning_rate = 0.1 
discount_factor = 0.99 
exploration_prob = 0.1 
num_episodes = 1000 
 
# Initialize environment and agent 
env = RecyclingEnvironment() 
states = env.energy_levels 
actions = env.actions 
agent = QLearningAgent(states, actions, learning_rate, discount_factor, exploration_prob) 
 
# Training loop 
for episode in range(num_episodes): 
    state = env.reset() 
    total_reward = 0 
 
    while True: 
        action = agent.choose_action(state) 
        next_state, reward = env.step(action) 
        agent.update_q_table(state, action, reward, next_state) 
        total_reward += reward 
        state = next_state 
 
        if state == "low": 
            break 
 
    if episode % 100 == 0: 
        print(f"Episode {episode}, Total Reward: {total_reward}") 
 
# Evaluation 
state = env.reset() 
total_reward = 0 
 
while state == "high": 
    action = agent.choose_action(state) 
    next_state, reward = env.step(action) 
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    total_reward += reward 
    state = next_state 
 
print(f"Evaluation - Total Reward: {total_reward}") 
 
 
OUTPUT 
Episode 0, Total Reward: 2 
Episode 100, Total Reward: 1 
Episode 200, Total Reward: 4 
Episode 300, Total Reward: 4 
Episode 400, Total Reward: 5 
Episode 500, Total Reward: 5 
Episode 600, Total Reward: 5 
Episode 700, Total Reward: 4 
Episode 800, Total Reward: 8 
Episode 900, Total Reward: 5 
Evaluation - Total Reward: 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULT 

Thus, the Recycling Robot problem has been implemented and executed succesfully 
using Q-Learning. 
 


